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Preface 

The rapidly evolving domain of data-driven science marks a transformative shift 

across various scientific disciplines, establishing itself as a cornerstone alongside 

traditional pillars such as experimentation, theoretical analysis, and computation. At the 

heart of this paradigm shift is Artificial Intelligence (AI), which offers unparalleled 

opportunities for unveiling the intricate relationships between composition, structure, 

and the properties or performance of materials. This revolution paves the way for 

accelerated materials discovery and innovation, propelling the field into a new era of 

research and development. 

In response to the burgeoning impact of AI on materials science, the International 

Workshop on Data-Driven Computational and Theoretical Materials Design 

(DCTMD2024) emerges as a pivotal event to “unlock the AI future of Materials 

Science”. This workshop is the result of a collaborative effort between Shanghai 

University (SHU) in China and the NOMAD Lab at the Fritz Haber Institute in 

Germany. DCTMD2024 is designed to serve as a confluence for leading scientists and 

researchers specializing in the cutting-edge realm of data-driven AI methodologies and 

their applications in both computational and experimental materials design. 

The primary objective of DCTMD2024 is to facilitate a comprehensive exchange of 

the latest research findings and breakthroughs in the field. By congregating a diverse 

assembly of experts and pioneers, the workshop endeavors to ignite stimulating 

discussions on the myriads of challenges and burgeoning opportunities within data-

driven materials science. It is a forum intended not just for showcasing the current state 

of the art but also for exploring future directions and fostering collaborative networks 

among attendees. 

 The significance of events like DCTMD2024 cannot be understated. They act as 

critical catalysts for advancing the frontier of materials research in the AI age, 

encouraging a synthesis of ideas and methodologies that could lead to the next wave of 

innovations. Through such collaborative and interdisciplinary exchanges, the workshop 

aims to chart a course for the future of materials design, one that is increasingly 

informed by the insights and efficiencies offered by AI and data-driven approaches. 
  

Workshop Chairs of DCTMD2024: 

- Matthias Scheffler (Fritz Haber Institute, Germany)  

- Tong-Yi Zhang (Shanghai University, China) 

  

Program Organizers of DCTMD2024: 

- Matthias Scheffler (Fritz Haber Institute, Germany)  

- Yi Liu (Shanghai University, China) 

- Markus Buehler (Massachusetts Institute of Technology, US) 

- Rika Kobayashi (Australian National University, Australia) 

  

Local Organizing Committee of DCTMD2024: 

- Jinchang Zhang, Lingyan Feng, Wei Ren, Junyi Ge, Yi Liu, Runhai Ouyang, Quan 

Qian, Zihan Wang, Jiani Sun (SHU, China） 

Shanghai, China 

Oct. 9-13, 2024  
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Overview 

1. Date and Venue 

⚫ Date: October 9-13, 2024 

⚫ Venues: Grand Central Hotel Shanghai  

505 Jiujiang Road, Shanghai, 200001 China 

and Shanghai University (SHU), Shanghai, China 

99 Shangda Road, Shanghai, 200444 China 

Note: Scan the code to access the website of DCTMD 

 

2. Registration 

⚫ Registration time: October 9-12, 2024 

⚫ Registration locations:  

➢ Oct. 9, 11, 12 at Grand Central Hotel Shanghai (Hotel lobby, 1F) 

➢ Oct. 10 at Shanghai University (Library & information hall) 

 

 

3. Activity 

 

 

4. Meal 

Date & Time Style & Location 

Oct. 9, 2024 (17:30~21:00) Buffet dinner at Grand Central Hotel Shanghai (1F) 

Oct. 10, 2024 (12:00~13:30) Buffet lunch at New Lehu Hotel in Shanghai 

University (1F) 

Oct. 10, 2024 (19:00~21:00) Buffet dinner at The Bund 

Oct. 11, 2024 (12:00~13:30) Buffet lunch at Grand Central Hotel Shanghai (1F) 

Oct. 11, 2024 (18:00~20:00) Banquet (round table) at Wang Baohe Hotel (5F) 

Oct. 12, 2024 (12:00~13:30) Buffet lunch at Grand Central Hotel Shanghai (1F) 

Oct. 12, 2024 (18:00~21:00) Buffet dinner at Grand Central Hotel Shanghai (1F) 

 

Date Activity Venue 

October 9, 2024 Arrival and 

Registration 

Hotel lobby (1F) 

Grand Central Hotel Shanghai 

October 10, 2024 Conference Library & information hall  

Shanghai University (Baoshan campus) 

October 11, 2024 Conference Shanghai hall (4F) 

Grand Central Hotel Shanghai 

October 12, 2024 Conference Shanghai hall (4F) 

Grand Central Hotel Shanghai 

October 13, 2024 Tutorial and 

Departure 

MGI building (510) 

Shanghai University (Baoshan campus) 
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5. Traffic information 

 

 

6. Local contact information 

⚫ Yi Liu (SHU, China) Tel: 18616846006; Email: yiliu@t.shu.edu.cn 

⚫ Runhai Ouyang (SHU, China) Tel: 18374606846; Email: rouyang@shu.edu.cn 

⚫  Zihan Wang (SHU, China) Tel: 13916957019; Email: wangzihan@shu.edu.cn 

⚫ Jiani Sun (SHU, China) Tel: 15152669988; Email: 1970996333@qq.com 
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Agenda of the “International Workshop on Data-Driven 

Computational and Theoretical Materials Design” (DCTMD2024) 

  

Dates:  October 9-13, 2024 

Venues: Grand Central Hotel Shanghai, Shanghai, China 

and Shanghai University (SHU), Shanghai, China 

 

Overview  

 7 Plenary talks: 30 mins each, including 5 min discussion  

 25 Invited talks: 20 mins each, including 3 min discussion  

 15 Contributed talks: 15 mins each, including 2 min discussion  

 37 Posters (~8 poster awards) 

 1 Panel discussion 1, 60 mins including 4 topics 

 1 Tutorial, 5 hours 

 

Day 0: October 9, 2024 – Registration and Reception, Grand Central 

Hotel Shanghai 

Time Activity 

1:00 PM – 

8:00 PM 

Arrival and registration at the hotel 

5:00 PM – 

8:00 PM 

Buffet dinner at the hotel 

 

Day 1: October 10, 2024, Shanghai University (SHU) 

Oct. 10: Morning Session (Plenary talk 2, Invited talk 2)  

Time Activity 

8:30AM–10:00 AM Moving from the hotel to SHU (~1 hour by conference bus 

or subway) 

10:00AM–10:20AM Opening Ceremony & Welcome Remarks 

10:20AM–10:50 AM 

Chair: 

Matthias Scheffler 

Plenary 1: “Polymer Informatics: Algorithmic Advances 

& Materials Design” 

Rampi Ramprasad (Georgia Tech, USA) 

10:50AM–11:20 AM 

Chair: 

Matthias Scheffler 

Plenary 2: “The Molecular Sciences Software Institute”  

T. Daniel Crawford (Virginia Tech, USA)  

Chair: 

Matthias Scheffler  

Session 1-1: Machine-learned interatomic potential 

11:20 AM–11:40 AM I1-1: “AI-Empowered Materials Design: Transforming 

Collaboration Paradigms and Overcoming Incentive 
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Barriers” 

Linfeng Zhang (DP Technology, Beijing, China) 

11:40 AM–12:00 PM I1-2: “Simulating the Microscopic World: From 

Schrödinger Equation to Large Atomic Models” 

Han Wang (Institute of Applied Physics and Computational 

Mathematics, Beijing, China) 

 

Oct. 10: Afternoon Session (Plenary talk 1, Invited talk 5, Panel discussion 1) 

Time Activity 

12:00 PM –1:30 PM Lunch Break; Video play at noon 

1:30 PM –2:00 PM 

Chair:  

T. Daniel Crawford 

Plenary 3: “AI-powered DFT methods”  

Xin Xu (Fudan University, Shanghai, China)  

Chair:  

T. Daniel Crawford 

Session 1-2: AI-augmented computational methods 

2:00 PM –2:20 PM I1-3: “First-principles artificial intelligence” 

Yong Xu (Tsinghua University, Beijing, China) 

2:20 PM –2:40 PM I1-4: “LASP 3.7 for Large-scale Atomic Simulation and 

the Application to Ethene Epoxidation on Silver” 

Zhipan Liu (Fudan University, Shanghai, China) 

2:40 PM –3:00 PM I1-5: “Accurate materials modeling by machine learning 

and beyond DFT methods” 

Carla Verdi (The University of Queensland, Australia)  

3:00 PM –3:20 PM I1-6: “Recent advances in Deep QMC developments and 

its molecular property calculations” 

Lixue Cheng (Microsoft Research AI for Science Lab, Berlin, 

Germany) 

3:20 PM –3:40 PM I1-7: “AI4Materials: From Simulation to Generation” 

Hongxia Hao (Microsoft Research AI for Science Lab, 

Shanghai, China) 

3:40 PM –4:40 PM 

Moderator:  

Rika Kobayashi 

(Australian 

National University) 

Panel Discussion:  

"Unlocking the AI future of Materials Science" 

⚫ Panel discussion includes four topics: Databases, 

Computations, AI algorithms, Autonomous/self-driving 

experiments (60 min) 

⚫ A special issue of Journal of Materials Informatics calls 

for research papers and perspective from the oral/poster 

presentations and panel discussion. 

4:40 PM –6:30 PM Moving from SHU to The Bund (~1 hour by conference bus 

or subway) 

6:30 PM –9:00 PM Dinner at The Bund 
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Day 2: October 11, 2024, Grand Central Hotel Shanghai 

Oct. 11: Morning Session (Plenary talk 1, Invited talk 5, Contributed talk 4) 

Time Activity 

8:30 AM –9:00 AM 

Chair:  

Jeffrey Robert 

Reimers 

Plenary 4: “Towards AI-enabled Fully Quantum 

(Bio)Molecular Simulations” 

Alexandre Tkatchenko (Luxembourg University, 

Luxembourg) 

Chair:  

Jeffrey Robert 

Reimers 

Session 2-1: Materials design via machine learning  

9:00AM–9:20 AM I2-1: “Deep Energy Methods for solving PDEs” 

Timon Rabczuk (The Bauhaus-Universität Weimar, 

Germany) 

9:20AM–9:40 AM I2-2: “Machine learning based multiscale exploration 

and characterization of 2D materials” 

Xiaoying Zhuang (Leibniz University Hannover, Germany) 

9:40AM–10:00AM I2-3: “HH130: A Standardized Dataset for Universal 

Machine Learning Force Field and the Applications in 

the Thermal Transport of Half-Heusler 

Thermoelectrics” 

Jiong Yang (Shanghai University, Shanghai, China) 

10:00AM–10:20 AM I2-4: “Advancing Molecular Simulations with Machine-

Learned Interatomic Potentials” 

Yangshuai Wang (National University of Singapore, 

Singapore 

10:20AM–10:40 AM Coffee Break 

Chair:  

Lei Shen 

Session 2-2: AI-assisted computational materials design 

10:40 AM–11:00 PM I2-5: “Adapting Explainable Machine Learning to Study 

Mechanical Properties of Two-Dimensional Hybrid 

Halide Perovskites” 

Dan Han (Jilin University, Changcun, China) 

11:00 AM–11:15 AM C2-1: “From computational screening to the synthesis of 

a promising OER catalyst” 

Zhenpeng Yao (Shanghai Jiaotong University, Shanghai, 

China) 

11:15 AM–11:30 AM C2-2: “From imaginary phonons to a universal 

interatomic potential: the case of BiFeO3” 

Bastien F. Grosso (University of Birmingham, United 

Kingdom) 
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11:30 AM–11:45 AM C2-3: “Computational modeling and simulation of 

molecular design and property prediction of novel 

elastomer materials” 

Jun Liu (Beijing University of Chemical Technology, 

Beijing, China) 

11:45 AM–12:00 PM C2-4: “Progress in Machine Learning Studies for High-

Entropy Alloys” 

Guangcun Shan (Beihang University, Beijing, China) 

 

Oct. 11: Afternoon Session (Plenary talk 1, Invited talk 4, Contributed talk 3) 

Time Activity 

12:00 PM –1:30 PM Lunch Break 

1:30 PM –2:00 PM 

Chair:  

Rampi Ramprasad 

Plenary 5: “A data driven robotic AI-chemist” 

Jun Jiang (University of Science and Technology of China, 

China) 

Chair:  

Rampi Ramprasad 

Session 2-3: Automatic, autonomous, self-driving 

experiments  

2:00 PM –2:20 PM I2-6: “Guiding the next experiment: Bayesian Global 

Optimization versus Reinforcement Learning” 

Turab Lookman (AiMaterials Research LLC, USA) 

2:20 PM –2:40 PM I2-7: “Creating Synergies between Experimental and 

Computational Approaches in Advanced Materials 

Design: Importance and Challenges of Clean Data” 

Annette Trunscke (FHI-Berlin, Germany) 

2:40 PM –3:00 PM I2-8: “Optimization of Process Conditions in the 

Synthesis of Perovskite Solar Cells and Methane 

Conversion Catalysts through Intelligent Robotic 

Laboratories” 

Jungho Shin (KRICT, Korea) 

3:00 PM –3:30 PM Coffee Break 

Chair:  

Lei Zhang 

Session 2-4: Data-driven computational materials design 

3:30 PM –3:50 PM I2-9: “Data-Enabled Synthesis Predictions for Molecules 

and Materials” 

Yousung Jung (Seoul National University, Korea)  

3:50 PM –4:05 PM C2-5: “New-Generation Materials Design Platform 

Powered by AI and Physical Modeling” 

Hui Zhou (DP Technology, Beijing, China) 

4:05 PM –4:20 PM C2-6: “Bayesian Optimization for High-Resolution 

Transmission Electron Microscopy” 

Xiankang Tang (TU Darmstadt, Germany) 
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4:20 PM –4:35 PM C2-7: “Anisotropic materials with abnormal Poisson’s 

ratios and acoustic velocities” 

Chunxia Chi (Nankai University, Tianjin, China) 

4:35 PM –6:00 PM Poster session (37 posters) at the hotel 

6:00 PM –8:00 PM Banquet at the Wang Baohe Hotel (5 min walk from the 

venue) 

 

Day 3: October 12, 2024, Grand Central Hotel Shanghai 

Oct. 12: Morning Session (Plenary talk 1, Invited talk 5, Contributed talk 4) 

Time Activity 

8:30 AM –9:00 AM 

Chair:  

Alexandre 

Tkatchenko 

Plenary 6: “Describing Materials Properties and 

Functions via the “Materials Genes” Concept”  

Lucas Foppa (Fritz Haber Institute of the Max-Planck-

Gesellschaft, Germany) 

Chair:  

Alexandre 

Tkatchenko 

Session 3-1: AI-assisted materials discovery 

9:00 AM –9:20 AM I3-1: “Symbolic Regression in Materials Informatics: 

Applications and Challenges” 

Runhai Ouyang (Shanghai University, Shanghai, China) 

9:20 AM –9:40 AM I3-2: “Finding Descriptors of Catalytic Properties from 

Data for Catalyst Design with the Help of Artificial 

Intelligence” 

Sergey V. Levchenko (Skolkovo Institute of Science and 

Technology, Moscow, Russia) 

9:40 AM –10:00 AM I3-3: “What do we mean by new? Quantifying structural 

uniqueness in the era of generative crystal structure 

prediction” 

Taylor Sparks (The University of Utah, USA) 

10:00AM–10:20 AM I3-4: “AI-accelerated grand-canonical method for 

surface processes” 

Yuanyuan Zhou (Leibniz institute for crystal growth, Berlin, 

Germany) 

10:20AM–10:40 AM Coffee Break 

Chair:  

Yousung Jung 

Session 3-2: Large models for materials design 

10:40AM–11:00 AM I3-5: “Language Data-Driven Machine Learning Design 

of New Materials” 

Lei Zhang (Nanjing University of Information Science and 

Technology, Nanjing, China) 
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11:00AM–11:15 AM C3-1: “Extraction of data from publications empowered 

by Kolmogorov-Arnold Networks” 

Wenkai Ning (Shanghai University, Shanghai, China) 

11:15AM–11:30 AM C3-2: “Materials-Discovery Workflows Guided by 

Symbolic Regression: Identifying Acid-Stable Oxides for 

Electrocatalysis” 

Akhil S. Nair (Fritz Haber Institute of the Max-Planck-

Gesellschaft, Germany) 

11:30AM–11:45 AM C3-3: “Battery prognosis from impedance spectroscopy 

using machine learning” 

Yunwei Zhang (Sun Yat-sen University, Guangzhou, China) 

11:45 AM–12:00 PM C3-4: “High-throughput calculation of spin Hall 

conductivity in 2D materials” 

Jiaqi Zhou (Université catholique de Louvain (UCLouvain), 

Belgium) 

 

Oct. 12: Afternoon Session (Plenary talk 1, Invited talk 5, Contributed talk 4) 

Time Activity 

12:00 PM –1:30 PM Lunch Break 

1:30 PM –2:00 PM 

Chair:  

Annette Trunscke 

Plenary 7: “AI Foundation models and Active Learning 

for Materials Discovery and Process Design” 

Xiaonan Wang (Tsinghua University, China) 

Chair:  

Annette Trunscke 

Session 3-3: Databases and large models  

2:00 PM –2:20 PM I3-6: “The Electronic-Structure Genome of Inorganic 

Crystals” 

Junfeng Qiao (EPFL, Switzerland) 

2:00 PM –2:40 PM I3-7: “A Large Multi-Modality Model for Chemistry and 

Materials Science” 

Xin Chen (Suzhou Laboratory, Suzhou, China) 

2:40 PM –3:00 PM I3-8: “Unexpected Failure and Success in Data-Driven 

Materials Science” 

Kangming Li (University of Toronto, Canada) 

3:00 PM –3:30 PM Coffee Break 

Chair:  

Wei Ren 

Session 3-4: Data-centric materials design 

3:30 PM –3:50 PM I3-9: “Scalable Crystal Structure Relaxation Using an 

Iteration-free Deep Generative Model with Uncertainty 

Quantification” 

Lei Shen (National University of Singapore, Singapore) 
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3:50 PM –4:05 PM C3-5: “Effective lattice potentials of perovskite oxides 

derived from elaborately designed training dataset” 

Huazhang Zhang (University of Liège, Belgium) 

4:05 PM –4:20 PM C3-6: “Leveraging Open-Access Libraries for Feature 

Engineering in Material Discovery” 

Mohammad Khatamirad (BasCat–UniCat BASF JointLab, 

Technical University of Berlin, Berlin, Germany) 

4:20 PM –4:35 PM C3-7: “Machine-learned interatomic potentials for 

screening multi-component alloys” 

Ivan S. Novikov (Skolkovo Institute of Science and 

Technology, Moscow, Russia) 

4:35 PM –4:50 PM C3-8: “An interpretable formula for lattice thermal 

conductivity of crystals” 

Zhibin Gao (Xi’an Jiaotong University, Xi’an, China) 

4:50 PM –5:30 PM Closing ceremony: Poster awards; Summary & farewell 

remarks 

6:00 PM –8:00 PM Buffet dinner at the hotel 

 

Day 4: October 13, 2024 Tutorial (optional) at Shanghai University 

(SHU) and Departure 

Time Activity 

8:30 AM – 

9:30 AM 

Moving from the hotel to SHU (~1 hour by conference bus or 

subway) 

9:30 AM – 

5:00 PM 

Tutorial:  

“DeepMD: from algorithms to applications” 

Yibo Wang et al. (DP Technology, China) 

 

Website of the DeepMD tutorial (Introduction and Registration): 

https://bohrium.dp.tech/courses/1347727500?tab=courses&lang=en-us  

https://bohrium.dp.tech/courses/1347727500?tab=courses&lang=en-us
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Note: The DeepMD tutorial has limited seats and needs additional registration. The 

tutorial is free for the registered participants at DCTMD (course materials and 

instruction in English). 

 

For updates, speaker details, and session topics, please visit International workshop on data-

driven computational and theoretical materials design (scievent.com) 

(https://dctmd2024.scievent.com/). 

 

  

https://dctmd2024.scievent.com/
https://dctmd2024.scievent.com/
https://dctmd2024.scievent.com/
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Poster List  

(4:35 PM-6:00 PM, Oct. 11, 2024 at Shanghai hall, 4F) 

P01 Structure and Dynamics of 1-Ethyl-3-Methylimidazolium 

Bis(trifluoromethylsulfonyl)imide Ionic Liquid/Alkyl Carbonate Co-

solvent Mixtures for Next Generation Li-Ion Battery Electrolytes-DFT 

and MD Study 

Abraham Molla Wagaye 

Department of Chemistry, College of Natural and Computational Science, Hawasa 

University, Ethiopia 

P02 Non-trivial Contribution of Carbon Hybridization in Carbon-based 

Substrates to Electrocatalytic Activities in Li-S Batteries 

Zhenyu Li*, Jiawen Zhu1, Jiaqi Cao1 
1Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory 

of Materials for Energy Conversion, Department of Applied Chemistry, Department of 

Chemical Physics, University of Science and Technology of China, China 

P03 Actively trained moment tensor potential for liquid electrolytes, crystal 

structure prediction, and lattice thermal conductivity calculations 

Nikita Rybin, 1, 2, *, Ivan Novikov1, Alexander Shapeev1, 2 
1Skolkovo Institute of Science and Technology, Moscow, Russia 
2Digital Materials LLC, Moscow, Russia 

P04 Data-driven design of novel two-dimensional conjugated metal-organic 

frameworks for efficient oxygen electrocatalysts  

Youxi Wang1
 , Zhenyu Li1 * 

1Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, 

University of Science and Technology of China, Hefei, China  

P05 HH130: a Database of Machine Learning Interatomic Potentials for 

Half-Heusler Thermoelectrics 

Yuyan Yang1‡
, Yifei Lin1‡

, Shengnan Dai*1, and Jiong Yang*1 

1Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits 

and Advanced Display Materials, Shanghai University, Shanghai 200444, China 

P06 Theoretical study of solvation structure of aqueous zinc ion battery 

electrolyte 

Jiang Liyuan1, Wu Jianbao1*, Jiang Yan1, Zhou Yulin1, Li Zhengdao1, Zhang 

Zongyao1 
1School of Mathematics, Physics and Statistics, Shanghai University of Engineering 

Science, Shanghai, China 

P07 Artificial-Intelligence Rules for the CO2 Activation on Single-Atom 

Alloys derived from Ab Initio Calculations  

Herzain I. Rivera-Arrieta*, Matthias Scheffler, Lucas Foppa*  

The NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft, 

Faradayweg 4-6,14195 Berlin, Germany 

P08 PotentialMind: Graph Convolutional Machine Learning Potential for 

Sb-Te Binary Compounds of Multiple Stoichiometries 
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Guanjie Wang1,2, Jian Zhou1, and Zhimei Sun1,* 
1School of Materials Science and Engineering, Beihang University, Beijing, 100191, China 
2School of Integrated Circuit Science and Engineering, Beihang University, Beijing 

100191, China 

P09 First-principles Study of Raman Spectroscopy in Two-dimensional 

Materials 

Leilei Zhu1, Honghui Shang1*, Honghui Shang1,2* 
1Key Laboratory of Precision and Intelligent Chemistry, University of Science and 

Technology of China, Hefei, 230026, China  
2Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, 

China 

P10 Landscape of Thermodynamic Stabilities of A2BB’O6 Compounds 

Yateng Wang1,2, Bianca Baldassarri3, Jiahong Shen3, Jiangang He1,2*, and 

Chris Wolverton3* 
1 Beijing Advanced Innovation Center for Materials Genome Engineering, University of 

Science and Technology Beijing, 100083 Beijing, China 
2 School of Mathematics and Physics, University of Science and Technology Beijing, 

100083 Beijing, China 
3 Department of Materials Science and Engineering, Northwestern University, Evanston,  

60208 Illinois, United States 

P11 Prediction of Viscosity Based on Machine Learning for Multi-

component Alloy Melts 

Yunjian Chen1, Qun Luo1*, Qian Li1,2,3* 
1 State Key Laboratory of Advanced Special Steel, School of Materials Science and 

Engineering, Shanghai University, Shanghai 200444, China 
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, 

Chongqing 400044, China 
3 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, 

China 

P12 Forecasting Crystal Structure Using Generative Adversarial Network 

with Data-Driven Latent Space Fusion Strategy 

Zian Chen, Guoyong Fang* 

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, 

China 

P13 DFT-driven Machine Learning model and molecular dynamics 

simulation for modelling polymerization and reaction kinetics 

Xiaoxin Shi1, Xinwei Chen1, Liang Wu1, Xinyuan Zhu1 
1 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 

Dongchuan Road, Shanghai, 200240 China 

P14 Masked Theme-specific Named Entity Recognition Assisted with Large 

Language Models 

Ying Zhao1*, Longlong Liao1, Jie Liu1 
1Hong Kong Quantum AI Lab, The University of Hong Kong, Hong Kong, China 

P15 Ampere-Level Current Density CO2 Reduction with High C2+ 

Selectivity on La(OH)3-Modified Cu Catalysts 
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Shuqi Hu1, Yumo Chen1, Zhiyuan Zhang1, Shaohai Li1, Heming Liu1, Xin 

Kang1, Jiarong Liu1, Shiyu Ge1, Jingwei Wang1, Wei Lv1, Zhiyuan Zeng2,3, 

Xiaolong Zou1, Qiangmin Yu, 1* and Bilu Liu1* 
1Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of 

Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua 

University, Shenzhen 518055, China 
2Department of Materials Science and Engineering and State Key Laboratory of Marine 

Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 

999077, China 
3Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China 

P16 Deep Learning Prediction of Molten Salts Properties: Combining 

Graph Convolutional Networks and Transfer Learning 

Wenshuo Liang1*, Min Bu2, Yun Xie3 
1Smart Logic, 288 Kangning Road, Jing'an District, Shanghai, China 
2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Road, 

Jiading District, Shanghai, China 
3National Engineering Research Center for Integrated Utilization of Salt Lake Resources, 

East China University of Science and Technology, 130 Meilong Road, Xuhui District, 

Shanghai, China 

P17 Data driven theoretical design of anion cluster based sodium anti-

perovskite superionic conductors  

Chaohong Guan, Hong Zhu*  

University of Michigan−Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong 

University, Shanghai 200240, China 

P18 Combining Machine Learning Models with First-Principles High-

Throughput Calculation to Accelerate the Search of Promising 

Thermoelectric Materials 

Tao Fan1*, Artem R. Oganov2 
1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, 

Shanghai Institute of Ceramics, Shanghai, China 
2Material Discovery Laboratory, Skolkovo Institute of Science and Technology, Moscow, 

Russia 

P19 Multi-modality Dynamic data and knowledge-driven Scientific 

Discovery 

Xiaonan Wang1*, Zemeng Wang1 
1Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China 

P20 Accurate Band Gap Prediction Based on an Interpretable Δ-Machine 

Learning 

Lingyao Zhang a, Wei Ren a* 
aPhysics Department, International Centre of Quantum and Molecular Structures, Institute 

for Quantum Science and Technology, Materials Genome Institute, Shanghai University, 

Shanghai 200444, China 

P21 TSFF: A high accuracy machine learning NEB method for transition 

state searching 

Wentao Li1, Zhihao Wang1, Jun Yin2, Xiaonan Wang1,2* 
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1Department of Chemical Engineering, Tsinghua University, Beijing 100084, China 
2Department of Chemical and Biomolecular Engineering, National University of Singapore, 

4 Engineering Drive 4 Singapore, 117576 Singapore 

P22 DPA-2 Potential & Open-Source Platforms Assisted Workflow for 

Fischer- Tropsch Reaction Mechanism Study on Iron-Carbide Surfaces 

Zhaoqing Liu1*, Zhe Deng1, Hong Jiang1,*
 

1College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 

China 

P23 Accelerating the discovery of perovskite electrocatalysts for oxygen 

evolution reactions through center-environment deep learning 

Yihang Li, Lingyan Feng* 

Materials Genome Institute, Shanghai University, Shanghai 200444, China 

P24 Reciprocal Prediction of Multimodal Spectral and Structural 

Descriptors for Incomplete Data  

Guokun Yang, Song Wang, Jun Jiang 

Hefei National Research Center for Physical Sciences at the Microscale, University of 

Science and Technology of China, Hefei, Anhui 230026, China  

P25 Corrosion-resistant Mg alloy design through high-throughput 

simulations and machine learning  

Gaoning Shi1, Xinchen Xu2, Yaowei Wang1, Jieqiong Yan1, Tian Xie2, Hong 

Zhu1, Xiaoqin Zeng2
 

1University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao 

Tong University, Shanghai, China. 
2School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 

China 

P26 Understanding and tuning negative longitudinal piezoelectricity in 

hafnia 

Huirong Jing, Chaohong, Hong Zhu*  
1Shanghai Jiao Tong University, Shanghai, China 

P27 DPA-2: a large atomic model as a multi-task learner 

Duo Zhang1,2, Xinzijian Liu1,2, Hui Zhou1 *, Yu-Zhi Zhang1 

1DP Technology, Beijing 100080, China 
2AI for Science Institute, Beijing 100080, China 

P28 End-to-End Crystal Structure Prediction from Powder X-Ray 

Diffraction 

Qingsi Lai1,2, Lin Yao1, Zhifeng Gao1, Siyuan Liu1, Hongshuai Wang1, 

Shuqi Lu1, Di He3, Liwei Wang2,3, Cheng Wang4,5, Guolin Ke1, Hui Zhou1 *, 

Yu-Zhi Zhang1 
1DP Technology, Beijing 100080, China 
2Center for Data Science, Peking University, Beijing 100871, China. 
3School of Intelligence Science and Technology, Peking University, Beijing 100871, China. 
4College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, 

China. 5AI for Science Institute, Beijing, 100084, China. 

P29 Material Visualization Modeling with Uni-View-Materials 
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Hui Zhou1 *, Yu-Zhi Zhang1
 

1DP Technology, Beijing 100080, China  

P30 Harvest the Polyanion Rotation in Sodium Superionic Conductors 

Yu Yang1, Chaohong Guan1, Runxin Ouyang1, Renyu Cai1, Hong Zhu1* 
1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong 

University, Shanghai, China 

P31 Cross-Scale Multi-modal Multi-Target CO2RR Interface Catalysis 

Model 

Zhihao Wang1, Xiaonan Wang1,2 * 
1Department of Chemical Engineering, Tsinghua University, Beijing 100084, China 
2Department of Chemical and Biomolecular Engineering, National University of Singapore, 

117585, Singapore 

P32 “What you need is pre-attention”: machine learning with center-

environment features 

Bin Xiao1, Yuchao Tang2, Yihang Li1, Yi Liu1,2* 
1Materials Genome Institute, Shanghai University, Shanghai 200444, China 
2Department of physics, Shanghai University, Shanghai 200444, China 

P33 High-throughput experimental and machine learning optimization of 

composition and processing for high-strength and high-conductivity 

copper alloys: from thousand samples to million predictions 

Tao Han1, Chen Zheng1, Yanjie Liu1, Yi Liu1* 
1Materials Genome Institute, Shanghai University, Shanghai 200444, China 

P34 Next-generation ReaxFF reactive force fields for carbon, hydrocarbon, 

and alloys 

Qi He1, Qingqing Wang1, Wan Du1, Fu Liu2, Zhuojun Xiao1, Bin Xiao1, Yi 

Liu1,2* 
1Materials Genome Institute, Shanghai University, Shanghai 200444, China 
2Department of physics, Shanghai University, Shanghai 200444, China 

P35 mol-CSPy: An open-source crystal structure prediction code 

Jordan Dorrell 

University of Southampton, UK 

P36 Combinational Data-driven Innovation of Ecofriendly Transparent 

Solar Heat Control Coating for Green Buildings  

Weibin Zhang, Jinglei Yang* 

Department of Mechanical and Aerospace Engineering, The Hong Kong University of 

Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China 

P37 The Role of ReaxFF in Material Science 

Biyuan Liu, Yonglin Zhang, Jinglei Yang* 

Department of Mechanical and Aerospace Engineering, The Hong Kong University of 

Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China. 
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Plenary 1: 

Polymer Informatics: Algorithmic Advances & Materials Design 

Rampi Ramprasad 

Georgia Institute of Technology, USA 

ramprasad@gatech.edu 

http://ramprasad.mse.gatech.edu 

 

Polymers display extraordinary diversity in their chemistry, structure, and 

applications. However, finding the ideal polymer possessing the right combination of 

properties for a given application is non-trivial as the chemical space of polymers is 

practically infinite. This daunting search problem can be mitigated by surrogate models, 

trained using machine learning algorithms on available property data, that can make 

instantaneous predictions of polymer properties. I will present versatile, interpretable, 

and scalable schemes to build such predictive models. Our “multi-task learning” 

approach efficiently, effectively, and simultaneously learns and predicts multiple 

polymer properties. It is thus a powerful tool to solve “forward materials problems”, 

i.e., property predictions. I will also discuss new approaches to solve “inverse materials 

problems”, i.e., identifying materials that satisfy target property criteria. These forward 

and inverse method developments are expected to have a significant impact on data-

driven materials discovery, as will be illustrated using a few examples. 

 

References 

1. Huan Tran, Rishi Gurnani, Chiho Kim, Ghanshyam Pilania, Ha-Kyung Kwon, Ryan P. Lively & 

Rampi Ramprasad, “Design of functional and sustainable polymers assisted by artificial intelligence”, 

Nature Reviews Materials (2024) 

2. Rohit Batra, Le Song and Rampi Ramprasad, “ Emerging materials intelligence ecosystems 

propelled by machine learning”, Nature Reviews Materials (2020). 

3. Christopher Kuenneth and Rampi Ramprasad, “polyBERT: A chemical language model to enable 

fully machine-driven ultrafast polymer informatics”, Nature Communications (2023). 
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Bio： 

Prof. Ramprasad is presently the Regent’s Entrepreneur, and the Michael E. 

Tennenbaum Family Chair and Georgia Research Alliance Eminent Scholar in the 

School of Materials Science & Engineering at the Georgia Institute of Technology. His 

area of expertise is the development and application of computational and machine 

learning tools to accelerate materials discovery, as applicable to energy production, 

storage, and utilization. Prof. Ramprasad received his B. Tech. in Metallurgical 

Engineering at the Indian Institute of Technology, Madras, India, an M.S. degree in 

Materials Science & Engineering at the Washington State University, and a Ph.D. 

degree also in Materials Science & Engineering at the University of Illinois, Urbana-

Champaign. He is also the co-founder of Matmerize, Inc., a company that offers AI-

based software solutions to accelerate polymers and formulations development. 

Prof. Ramprasad is a Fellow of the Materials Research Society, a Fellow of the 

American Physical Society, an elected member of the Connecticut Academy of Science 

and Engineering, and the recipient of the Alexander von Humboldt Fellowship and the 

Max Planck Society Fellowship for Distinguished Scientists. He has authored or co-

authored over 275 peer-reviewed journal articles, 8 book chapters and 8 patents, and 

has delivered over 300 invited talks at Universities and Conferences worldwide. He is 

a member of the Editorial Advisory Boards of npj Computational Materials, ACS 

Materials Letters and Journal of Physical Chemistry A/B/C. He created and chaired the 

inaugural 2022 Gordon Research Conference on Computational Materials Science and 

Engineering.  
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Plenary 2: 

The Molecular Sciences Software Institute 

Daniel Crawford  

Virginia Tech, USA 

 

The Molecular Sciences Software Institute (MolSSI) was established in 2016 to 

serve as a nexus for science, education, and cooperation for the global computational 

molecular sciences community- a broad domain that includes quantum chemistry, bio-

/macro-molecular simulation, and computational materials science. Guided by leading 

representatives from across the domain, the MolSSI develops and deploys advanced 

software cyberinfrastructure, community-wide standards for code and data 

interoperability, and an educational initiative that reaches a large, diverse audience of 

undergraduate, graduate, and postdoctoral students. The MolSSI has enabled new 

science and broader impacts and is training the next generation of researchers for fields 

interconnected at the molecular level. This lecture will provide an overview of the 

MolSSI and its numerous software infrastructure projects designed to benefit the 

molecular sciences. 

 

Bio: 

 
Prof. T. Daniel Crawford is the University Distinguished Professor and Ethyl Chair 

of Chemistry at Virginia Tech, as well as the Director of the Molecular Sciences 

Software Institute in Blacksburg, Virginia. He received his bachelor's degree in 

chemistry and mathematics in 1992 from Duke University and his Ph.D. in 1996 from 

the University of Georgia's Center for Computational Quantum Chemistry under the 

direction of Prof. Henry F. Schaefer.  He held joint postdoctoral positions at 

U.  Georgia and U. Texas before joining the Virginia Tech faculty in 2000.  Prof. 

Crawford's research focuses on the development of accurate quantum mechanical 

models for simulating the optical and vibrational spectra of chiral molecules.  He has 

given more than 230 lectures in 27 countries.  Prof. Crawford is the winner of 2010 

Dirac Medal of the World Association of Theoretical and Computational Chemists, 

winner of the 2023 Cottrell STAR Award from the Research Corporation for Science 

Advancement, and an elected member of the International Academy of Quantum 

Molecular Science. He is a Fellow of the American Chemical Society and the Deputy 

Editor of the Journal of Physical Chemistry A. 
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Plenary 3: 

AI-powered DFT methods 

Xin Xu1* 
1Department of Chemistry, Fudan University, Shanghai 20048, China 

*Corresponding Author: xxchem@fudan.edu.cn 

  

Density Functional Theory (DFT) is currently the most widely used and successful 

method for electronic structure calculations. However, as the exact functional is 

unknown, all DFT computations require using some forms of Density Functional 

Approximations (DFAs). We believe that, on one hand, it is necessary to develop 

increasingly accurate DFAs that incorporate the basic essence of physics; on the other 

hand, it is important to develop statistical models, using machine learning (ML) 

techniques, to correct the intrinsic errors of the existing DFAs. With more accurate data 

being accessible, new physics and new insights are expected to emerge. To this end, our 

group is dedicated to developing the doubly hybrid functionals of the XYG3 type, while 

also advancing multiple ML methods for accurate predictions of energies and properties. 

This report will introduce some of the effort and progress made by our group in 

developing AI-powered DFT methods. 

  

Keywords: Density Functional Theory, DFT, XYG3, Machine Learning, R-xDH7-

SCC15, X1, X3D, XPaiNN, SVM-M  
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7. Zhang, I.Y., Xu, X., Goddard III, W. A.. “Doubly hybrid density functional for accurate descriptions 

of nonbond interactions, thermochemistry, and thermochemical kinetics”, PNAS (2009), 106(13), 4963-
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Bio： 

Xin Xu received his Doctoral Degree in Theoretical Chemistry from Xiamen 

University, China, in 1991. After a postdoctoral stay at Fujian Institute of Research on 

the Structure of Matter, Academia Sinica, he was appointed as an associated professor 

in 1993 and was promoted to a full professor in 1995 in the department of chemistry, 

Xiamen University. He was also affiliated to the State Key Lab of Physical Chemistry 

on Solid Surfaces (PCOSS), China, where he acted as deputy director from 1996 to 

2003. He was a visiting professor at Kyoto University, Japan, Ecole Normale 

Superieure de Lyon, France, and a visiting associate at California Institute of 

Technology, USA. From 2006, he was appointed as Lu-Jia-Xi Chair-professor of 

Xiamen University. From 2010, he moved to Fudan University, where he currently is 

the Chang-Jiang chair professor. His research interests involve mainly development of 

density functional theory method and its applications. 
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Plenary 4: 

Towards AI-enabled Fully Quantum (Bio)Molecular Simulations 

Alexandre Tkatchenko 

Department of Physics and Materials Science, the University of Luxembourg, Luxembourg 

 

The convergence between accurate quantum-mechanical (QM) models (and codes) 

with efficient machine learning (ML) methods seem to promise a paradigm shift in 

molecular simulations. Many challenging applications are now being tackled by 

increasingly powerful QM/ML methodologies. These include modeling covalent 

materials, molecules, molecular crystals, surfaces, and even whole proteins in explicit 

water (https://www.science.org/doi/abs/10.1126/sciadv.adn4397). In this talk, I attempt 

to provide a reality check on these recent advances and on the developments required 

to enable fully quantum dynamics of complex functional (bio)molecular systems. 

Multiple challenges are highlighted that should keep theorists in business for the 

foreseeable future. 

 

Reference 

1. Ensuring the accuracy of high-level QM methods (https://doi.org/10.1038/s41467-021-24119-3; 

https://doi.org/10.1038/s41586-023-06587-3),  

2. Describing intricate QM long-range interactions (https://doi.org/10.1126/sciadv.aax0024; 

https://doi.org/10.1126/science.aae0509; https://doi.org/10.1103/PhysRevLett.128.106101),  

3. Treating quantum electrodynamic effects that become relevant for complex molecules 

(https://doi.org/10.1021/acs.jpclett.1c04222; https://doi.org/10.1103/PhysRevResearch.4.013011). 

4. Developing increasingly accurate, efficient, scalable, and transferable ML architectures for 

molecules and materials (https://doi.org/10.1038/s41467-022-31093-x; https://arxiv.org/abs/2209.14865; 

https://arxiv.org/abs/2209.03985). 

5. Accounting for the quantum nature of the nuclei and the influence of external environments 

(https://doi.org/10.1038/s41467-020-20212-1; https://doi.org/10.1038/s41467-022-28461-y).I argue that 

only a conjunction of all these developments will enable the long-held dream of fully quantum 

(bio)molecular simulations. 
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Bio: 

 
Alexandre Tkatchenko is a professor at the Department of Physics and Materials 

Science (and head of this department since January 2020) at the University of 

Luxembourg, where he holds a chair in Theoretical Chemical Physics composed of ~35 

multidisciplinary scientists. Tkatchenko also holds a distinguished visiting professor 

position at the Technical University of Berlin. His group develops accurate and efficient 

first-principles computational and artificial intelligence models to study a wide range 

of complex materials, aiming at qualitative understanding and quantitative prediction 

of their structural, cohesive, electronic, and optical properties at the atomic scale and 

beyond. He has delivered more than 450 invited talks, seminars, and colloquia 

worldwide, published 230 articles in prestigious journals (h-index of 88 with more than 

44,000 citations; Top 1% ISI highly cited researcher since 2018 until now), and serves 

on the editorial boards of four society journals: Science Advances (AAAS), Physical 

Review Letters (APS), Journal of Physical Chemistry Letters (ACS), and Chemical 

Science (RSC). Tkatchenko has received a number of awards, including APS Fellow 

from the American Physical Society, Fellow of the Royal Society of Chemistry, Gerhard 

Ertl Young Investigator Award of the German Physical Society, Dirac Medal from the 

World Association of Theoretical and Computational Chemists (WATOC), van der 

Waals prize of the international conference on non-covalent interactions (ICNI), 

Feynman Prize for Nanotechnology from the Foresight Institute, and five flagship 

grants from the European Research Council (ERC): a Starting Grant in 2011, a 

Consolidator Grant in 2017, an Advanced Grant in 2022, and Proof-of-Concept Grants 

in 2020 and 2023. He is also a co-founder of Quastify GmbH–a start-up that combines 

quantum and statistical mechanics with machine learning for efficiently exploring 

chemical spaces. 
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Plenary 5:  

A Data Driven Robotic AI-Chemist 

Jun Jiang1,* 
1Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology, China 

*Email: jiangj1@ustc.edu.cn 

 

The realization of automated chemical experiments by robots unveiled the prelude 

of artificial intelligent laboratory. We have recently built a robotic AI-chemist system 

that is capable of proposing scientific hypothesis after reading/disgusting existing 

literature, executing a full set of experiments (synthesis, characterization, and 

performance testing) for multiple chemical tasks, and building predictive models based 

on theoretical calculations and experimental data feedback, allowing to propose new 

hypothesis for next optimizing iteration. Over 20 distinct models and a set of 60 

instructions have been developed to facilitate the collaboration of 3 types of robotics 

across 39 self-developed chemical stations. Within this system, over 100 experiments 

are conducted daily. The scope of research encompasses various fields, including 

photocatalysis, functional molecules, and energy materials, resulting in a thousand-fold 

increase in research and development efficiency. Concurrently, more than 2000 

computational tasks and 10000 entries are processed simultaneously, with the entire life 

cycle of samples meticulously documented. Optimization algorithms, such as Bayesian 

methods, are integrated to enable autonomous research, while 15 models —

encompassing text, graphs, tables, and classifications—are employed in the high-

throughput scientific archiving process, which provides a robust foundation of data, 

essential for recommending experimental workflows. With the help of computations, 

AI chemist has the ability to find the optimal result beyond the chemical space covered 

by the experiments. It means that we have created a robotic AI chemist that is capable 

of executing all-round chemical research with data driven intelligence. In the future, 

the more advanced all-round AI-Chemists equipped with scientific data intelligence 

may cause changes to chemical R&D. 

Figure 1. Three basic components of the robotic AI-Chemist system 

 

Keywords: Machine Learning, High-Entropy Alloys, Predictive Modeling, Materials 

Science. 
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Bio： 

 

Prof. Jun Jiang is a distinguished professor of physical chemistry at the University 

of Science and Technology of China (USTC), within the Department of Chemical 

Physics, School of Chemistry and Materials Science. He boasts an impressive academic 

background, having earned a Ph.D. in Theoretical Chemistry from the Royal Institute 

of Technology, Sweden, in 2007, and another Ph.D. in Solid State Physics from the 

Shanghai Institute of Technical Physics, Chinese Academy of Science, in 2008, 

following a B.S. degree from WuHan University in 2000. 

Prof. Jiang's research interests are diverse and interdisciplinary, focusing on multi-

scale modeling method development, which spans quantum chemistry, molecular 

mechanics, and solid-state physics. He also delves into bio-photonics, examining the 

nonlinear spectroscopy of proteins, RNA, and photosystems, as well as bio-electronics, 

where he explores nano-materials and nano-technology applications in medical 

diagnosis and gene/DNA sequencing. Prof. Jiang’s recent research interests include the 

development of “AI-Chem” lab that is an autonomous self-driving chemistry lab, 

integrating computation, experiments, robotic automation, and AI.  

His contributions to the field, alongside his academic pursuits, position Prof. Jiang 

as a leading figure in his disciplines. For more in-depth information about his 

publications and research achievements, visiting his personal homepage 

(http://staff.ustc.edu.cn/~jiangj1/) and dedicated research platforms might provide 

additional insights. 
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Plenary 6: 

Describing Materials Properties and Functions via the “Materials Genes” Concept  

Lucas Foppa* 

The NOMAD Laboratory at the Molecular Physics Department, Fritz Haber Institute of the Max Planck 

Society, Berlin, Germany 

*Corresponding Author: foppa@fhi-berlin.mpg.de 

 

The intricate interplay of several underlying processes governing certain materials’ 

properties and functions prevents the explicit, atomistic modelling and hinders the 

efficient design of new materials. In this talk, I will discuss an AI approach to identify 

the key descriptive parameters (“materials genes”) correlated with the materials 

performance and reflecting the physical processes that trigger, facilitate, or hinder the 

materials’ behavior.1 The symbolic-regression sure-independence-screening-and-

sparsifying-operator (SISSO)2,3 and the subgroup-discovery (SGD) AI methods 

leverage the typically small high-quality experimental or theoretical datasets in 

materials science. They identify nontrivial relationships between multiple key 

descriptive parameters and the performance of exceptional materials, guiding the 

design of new, improved materials. The “materials genes” concept and its impact will 

be illustrated for heterogeneous catalysis as an example of a complex materials’ 

function.1,4,5 

 

Keywords: Symbolic Regression, SISSO, Subgroup Discovery, Heterogeneous 

Catalysis 
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Bio: 

 

Dr. Lucas Foppa received his PhD from ETH Zurich, where his research focused 

on the development of first-principles-based multi-scale approaches to model 

heterogeneous catalysis. Then, he moved to the Fritz Haber Institute of the Max Planck 

Society as a Swiss National Science Foundation postdoc fellow, where he worked on 

AI methods for materials science. Since 2021, he is the head of the group “ab initio and 

AI methods for heterogeneous catalysis” at the Fritz Haber Institute. His research 

focuses on the integration of experimental and theoretical approaches in materials 

science and catalysis via AI and on the development of AI methodologies based on 

symbolic regression and subgroup discovery. 

  



International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

28 

 

Plenary 7: 

AI Foundation models and Active Learning for Materials Discovery and Process 

Design 

Xiaonan Wang1* 
1Department of Chemical Engineering, Tsinghua University, Beijing, China 

*Corresponding Author: wangxiaonan@tsinghua.edu.cn 

 

As the world faces intensifying climate impacts and the urgent need to mitigate 

greenhouse gas emissions, the role of materials research in driving sustainable 

development becomes increasingly critical. Artificial intelligence (AI) has become 

pivotal in materials innovation and development, promising to catalyze breakthroughs 

by integrating with traditional materials technologies. This talk will introduce our smart 

systems engineering approaches, combining multi-scale modeling and learning in 

materials technologies and process engineering for sustainability. Our research 

highlights the transformative potential of integrating theoretical calculations, deep 

learning models, and active learning strategies for designing high-performance 

catalysts and functional materials, for Carbon Capture, Utilization, and Storage (CCUS) 

as well as clean energy applications, aiming toward a sustainable future and aligning 

with net-zero goals. We also developed various foundation models and tools to enhance 

both computational and experimental approaches to catalyst design, marking a 

significant step toward pre-trained models for catalyst discovery and process 

optimization. The talk will conclude by presenting the latest research progress on large-

scale AI foundation models in the field, along with an analysis of their future potential. 

 

Keywords: Machine Learning, AI for Science, Catalyst Design, CCUS, Smart Systems 

Engineering 
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3. Chen, H.; Zheng, Y.; Li, J.; Li, L.; Wang, X.* AI for Nanomaterials Development in Clean Energy 

and Carbon Capture, Utilization and Storage (CCUS). ACS Nano 2023, 17 (11), 9763–9792. 

4. Yang, H.; Li, J.; Wang, X.*; Chen, P.-Y.* Automatic Strain Sensor Design via Active Learning and 

Data Augmentation for Soft Machines. Nat. Mach. Intell. 2022, 4 (1), 84–94. 

5. Xu, S.; Li, J.; Cai, P.; Liu, X.; Liu, B.*; Wang, X.* Self-Improving Photosensitizer Discovery System 

via Bayesian Search with First-Principle Simulations. J. Am. Chem. Soc. 2021, 143 (47), 19769–

19777. 
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Dr Xiaonan Wang is currently a tenured associate professor in the Department of Chemical 

Engineering at Tsinghua University. She received her BEng from Tsinghua University in 2011 and 

PhD from University of California, Davis in 2015. After working as a postdoctoral research 

associate at Imperial College London, she joined the National University of Singapore (NUS) as an 

assistant professor since 2017 and later became an adjunct associate professor.  

Her research focuses on the development of intelligent computational methods including multi-

scale modelling, optimization, data analytics and machine learning for applications in advanced 

materials, energy, environmental and manufacturing systems to support sustainable development. 

She is leading a Smart Systems Engineering research group at NUS and Tsinghua as PI 

and led the AI accelerated Materials Development programme in Singapore and China. She has 

published more than 150 peer-reviewed papers and 3 book chapters, among which 12 are ESI highly 

cited papers with an H index of 48. She has organized and chaired several international conferences, 

and delivered more than 60 invited talks at conferences and universities on five continents.  

As a rising young scientist, she was recognized as a World’s Top 2% Scientists, Cell Press 

Women Scientist, ACS Sustainable Chemistry & Engineering Lectureship, 50 Women in Tech by 

Forbes China, AIChE-SLS Outstanding Young Principal Investigator, Young Researcher Award for 

Engineering Sustainable Development, IChemE Global Awards Young Researcher finalist and 

selected for Royal Society International Exchanges Award, as well several best paper and emerging 

investigator awards. 

  



International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

30 

 

I1-1: 

AI-Empowered Materials Design: Transforming Collaboration Paradigms and 

Overcoming Incentive Barriers 

Linfeng Zhang 

DP Technology and AI for Science Institute, Beijing, China 

 

The rapid evolution of AI-assisted materials design demands collaborative efforts 

that transcend traditional academic and industrial paradigms. However, differing 

incentive structures—academia's focus on publishing and industry's focus on profits—

pose significant challenges. In this talk, I will discuss strategies to foster such initiatives, 

drawing from my experiences in algorithm and model design, open-source software 

development, and creating computing platforms for teaching, research, and 

competitions. I will also highlight the importance of bridging computation and 

experimentation into intelligent closed-loop systems. These efforts underscore the need 

for interdisciplinary cooperation and innovative incentive models to advance AI-driven 

materials design. 

 

Bio： 

 

Linfeng Zhang, co-founder of DP Technology and dean of AI for Science Institute, 

Beijing, holds a background in applied mathematics from Princeton University (2020) 

and physics from Peking University (2016). His work concentrates on the 

interdisciplinary field of AI for Science, contributing to machine learning, 

computational chemistry, and materials and drug design. Linfeng is the major developer 

of a series of popular open-source software integrating AI and physical simulation, and 

has been promoting the DeepModeling community for AI for Science enthusiasts. His 

efforts have led to several significant projects and recognition, including the ACM 

Gordon Bell Prize in 2020, and a feature on the cover of Forbes Asia's 30 Under 30 list 

for 2022. 
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I1-2: 

Simulating the Microscopic World: From Schrödinger Equation to Large Atomic 

Models 

Han Wang  

Institute of Applied Physics and Computational Mathematics, Beijing, China 

 

This presentation reviews the historical development of atomic models, from John 

Dalton's atomic theory to the establishment of quantum mechanics, and the challenges 

faced by modern microscopic simulation methods. The focus is on the application of 

machine learning models in atomic-scale simulations, with particular emphasis on the 

Deep Potential Molecular Dynamics (DeePMD) model, which balances accuracy and 

efficiency in handling large-scale atomic systems. Additionally, the presentation 

discusses the limitations of existing machine learning models. To overcome these 

limitations, several attempts to create universal machine learning models are introduced, 

highlighting the difficulties in developing a multi-disciplinary, multi-task general 

model. Finally, the presentation proposes the DPA-2 Large Atomic Model (LAM), 

detailing its architecture, training methods, fine-tuning strategies, and knowledge 

distillation techniques, along with an initial establishment of a supporting workflow. 

The presentation demonstrates DPA-2's ability to generalize from a few shots and its 

accuracy in real-world applications. Concluding, the presentation introduces the 

OpenLAM initiative, an open-source project aimed at advancing the development of 

large atomic models. 

 

Bio: 

 

Han Wang is a professor and doctoral advisor at the Institute of Applied Physics 

and Computational Mathematics (IAPCM), Beijing, China. He graduated from the 

School of Mathematical Sciences at Peking University in 2011 with a Ph.D. in Science. 

From 2011 to 2014, he conducted postdoctoral research at the Department of 

Mathematics and Computer Science at the Free University of Berlin. In 2014, he joined 

IAPCM. His primary research interests lie in multiscale modeling and computational 

methods in molecular dynamics simulations. Together with collaborators, he developed 

the deep potential model, addressing the dilemma between accuracy and efficiency in 

traditional methods, and advanced the scale of first-principles. 
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I1-3: 
First-principles artificial intelligence 

Yong Xu 

Department of Physics, Tsinghua University, China 

yongxu@mail.tsinghua.edu.cn  

 

First-principles methods based on density functional theory (DFT) have become 

indispensable to the study of physics, chemistry, materials science, etc., but are 

bottlenecked by the efficiency-accuracy dilemma. The marriage of first-principles 

methods and artificial intelligence (AI) has the potential to revolutionize the field. In 

this talk, I will review an emerging interdisciplinary field of first-principles AI, which 

applies state-of-the-art AI techniques to help solve bottleneck problems of first-

principles computation. In particular, I will introduce our recent works on developing a 

deep neural network framework to learn the dependence of DFT Hamiltonian (DeepH) 

on the atomic structure1-3. The neural network models are trained by DFT data on small 

structures and then applied to study unseen material structures without invoking 

sophisticated DFT computation, making efficient and accurate study of large-scale 

materials feasible. This development in combination with recent advances of deep-

learning electronic structure calculations open the door for neural-network DFT 

calculations4-10. Very likely, in the near future most first-principles computation will be 

performed by neural networks, so will materials discovery and design. 

 

References: 

1. H. Li, et al. Nature Computational Science 2, 367 (2022) 

2. X. Gong, et al. Nature Communications 14, 2848 (2023) 

3. H. Li, et al. Nature Computational Science Sci. 3, 321 (2023) 

4. H. Li, et al. Materials Genome Engineering Advances e16 (2023) 

5. H. Li, et al. Physical Review Letters 132, 096401 (2024) 

6. Z. Tang, et al., arXiv:2302.08221 

7. Z Yuan, et al., arXiv:2402.04864 

8. Y Wang, et al., arXiv:2401.17015 

9. T. Bao, et al. arXiv:2404.06449 

10. Y. Li, et al. arXiv:2403.11287 
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Dr. Yong Xu is currently a tenured professor at Department of Physics, Tsinghua 

University, China, and a unit leader at Center for Emergent Matter Science (CEMS), 

RIKEN, Japan. He received his B.S. and Ph.D. degrees both at Tsinghua University, 

then worked at Fritz Haber Institute of Max Planck Society and Stanford University as 

a postdoc and a research scholar, respectively. He was awarded Alexander von 

Humboldt Fellowship of Germany and National Science Fund for Distinguished Young 

Scholars. His main research interest is to understand/predict emergent quantum 

phenomena and materials from first-principles. 
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I1-4: 
LASP 3.7 for Large-scale Atomic Simulation and the Application to Ethene 

Epoxidation on Silver  

Zhi-Pan Liu  

Department of Chemistry, Fudan University, Shanghai, China 

 

This lecture introduces our recent progress in machine-learning atomic simulations 

for catalysis by using LASP software (version 3.7, www.lasphub.com) developed by 

our group1 since 2018. Our methodology for bulk, surface structure search, and reaction 

sampling in the grand-canonical ensemble will be overviewed2-3. These methods were 

recently applied to resolve the active site for selective ethene epoxidation on silver, a 

long-standing problem in the field for more than 50 years. Ag-catalyzed ethene 

epoxidation is the only viable route for making ethene oxide (EO) in industry. Due to 

the lack of tools to probe the reaction at high temperatures and high pressures, the active 

site structure remains highly controversial. Here, with advanced machine-learning 

grand canonical global structure exploration and in-situ catalysis experiments, we 

identify a unique surface oxide phase, namely O5 phase, grown on Ag(100) under 

industrial catalytic conditions. This O5 phase features square-pyramidal subsurface O 

and strongly adsorbed ethene, which can selectively convert ethene to EO. The other 

Ag surface facets, Ag(111) and Ag(110), although also reconstructing to surface oxide 

phases, only produce CO2 due to the lack of subsurface O. The complex in-situ surface 

phases with distinct selectivity contribute to an overall medium (50%) selectivity of Ag 

catalyst to EO. Our further catalysis experiments with in-situ infrared spectrum confirm 

the theory-predicted IR-active C=C vibration (1583 cm-1) of adsorbed ethene on O5 

phase and the microkinetics simulation results. The active phase structure and activity 

help to settle the long dispute on the nature of active oxygen in ethene epoxidation 

caused by the ““pressure gap” and shed light on the design of better catalysts for olefin 

epoxidation.4 

 

References: 

1. Pei-Lin Kang, Cheng Shang, Zhi-Pan Liu, Large-Scale Atomic Simulation via Machine 

Learning Potentials Constructed by Global Potential Energy Surface Exploration, Acc. Chem. 

Res .2020,  53, 2119  

2. Sicong Ma, Si-Da Huang, Zhi-Pan Liu , Dynamic Coordination of Cations and Catalytic 

Selectivity on Zn-Cr oxide Alloy during Syngas Conversion, Nature Catal.,  2019, 2, 671 

3. Ye-Fei Li, Zhi-Pan Liu, Smallest stable Si/SiO2 interface that suppresses quantum 

tunneling   from machine-learning-based global search, Phys. Rev. Lett.   2022, 128, 226102  

Dongxiao Chen#, Lin Chen#, Qian-Cheng Zhao, Zheng-Xin Yang, Cheng Shang, Zhi-Pan Liu*, 

'Square-pyramidal Subsurface Oxygen [Ag4OAg] Drives Selective Ethene Epoxidation on 

Silver', Nature Catal.,  2024, 7, 536  
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Zhipan Liu got Ph.D in 2003 from Queens Univ Belfast under the supervision of 

Prof. Peijun Hu, and then did PostDoc with Professor David King in University of 

Cambridge. He returned to China in 2005 and has been a full professor in the 

Department of Chemistry, Fudan University since then. He has published more than 

250 research papers with H-index 76. He was appointed as Executive Editor for J. Phys. 

Chem. A/B/C since 2017. Zhipan Liu’s research focuses on the reactivity prediction of 

chemical systems for energy storage and conversion. His group developed the first 

machine-learning global optimization program, LASP (large-scale atomic simulation 

program with neural network potential) starting from 2018, which incorporates a series 

of theoretical methods developed in the group, including the stochastic surface walking 

global optimization (SSW) method and global neural network (G-NN) method. LASP 

is now utilized by thousands of researchers worldwide for large-scale atomic 

simulations. 
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I1-5: 

Accurate materials modeling by machine learning and beyond DFT methods 

Carla Verdi 

The University of Queensland, Australia  

 

Machine learning is increasingly used to accelerate first-principles simulations of 

many materials properties. Training machine learning models based on accurate many-

body calculations, where the amount of data quickly becomes scarce, poses additional 

challenges. After showcasing the capabilities of machine-learned interatomic potentials 

trained on the fly within the popular VASP code, I will then focus on the random-phase 

approximation (RPA) as an example of a successful, but computationally costly, many-

body approach to electronic correlation, and show how to accelerate RPA calculations 

via machine learning in two key areas: the development of machine-learned potentials 

and the construction of new density functionals. First, we train machine-learned 

potentials based on the RPA using the principles of ∆-machine learning, which requires 

up to two orders of magnitude fewer data. I will discuss applications on accurate 

anharmonic lattice dynamics and charge transport in soft perovskite materials. Next, I 

will present a machine learning approach that maps the RPA to a pure density functional 

that can be considered a non-local extension of the standard gradient approximation. To 

train our functional we use not only RPA exchange-correlation energies but also 

derivative information in the form of RPA optimized effective potentials. We apply our 

scheme to create an RPA substitute functional for diamond and water. Overall, we 

demonstrate how machine learning can be merged with many-body methods, extending 

their applicability beyond current system sizes and time scales. 
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Dr Carla Verdi is currently a Lecturer at the University of Queensland, Australia. 

She received her PhD from the University of Oxford in 2017, where she remained as a 

post-doctoral researcher until 2018, specializing in the first-principles theory of the 

electron-phonon coupling and polaron physics. From 2019 to 2022, she was a post-

doctoral researcher and teaching assistant at the University of Vienna, working on 

anharmonic vibrational properties and finite-temperature simulations of solids by 

combining first-principles methods and machine learning. After being awarded a 

DECRA fellowship by the Australian Research Council, in 2023 she moved to the 

University of Sydney in Australia. Later the same year she joined the School of 

Mathematics and Physics at the University of Queensland as a lecturer and ARC 

DECRA fellow. Her current research mainly focuses on tailoring the properties of 

atomic defects for applications in quantum technologies.  
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I1-6: 

Recent advances in Deep QMC developments and its molecular property 

calculations 

Lixue Cheng 

Microsoft Research AI for Science Lab 

 

Variational ab-initio methods in quantum chemistry stand out among other methods 

in providing direct access to the wave function. This allows in principle straightforward 

extraction of any other observable of interest, besides the energy, but in practice this 

extraction is often technically difficult and computationally impractical. In this talk, we 

will first review the recent developments of use variational quantum Monte Carlo with 

deep-learning ansätze (deep QMC) in molecular and material problems from all the 

researchers in the community. Then, we further introduce the efforts in extracting 

different molecular properties from highly accurate deep QMC wavefunctions without 

basis set errors.We consider the electron density as a central observable in quantum 

chemistry and introduce a novel method to obtain accurate densities from real-space 

many-electron wave functions by representing the density with a neural network that 

captures known asymptotic properties and is trained from the wave function by score 

matching and noise-contrastive estimation.We also demonstrate the potential of our 

novel method by additionally calculating dipole moments, nuclear forces, contact 

densities, and other density-based properties.  

 

Reference 
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Accurate Real-space Electron Densities with Neural Networks, arXiv:2409.01306.  

2. Schätzle, Z., Szabó, P. B., Mezera, M., Hermann, J., & Noé, F. (2023). DeepQMC: An open-source 

software suite for variational optimization of deep-learning molecular wave functions. The Journal of 

Chemical Physics, 159(9). 

3. Hermann, J., Spencer, J., Choo, K., Mezzacapo, A., Foulkes, W. M. C., Pfau, D., ... & Noé, F. (2023). 

Ab initio quantum chemistry with neural-network wavefunctions. Nature Reviews Chemistry, 7(10), 
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Lixue Cheng (Sherry) is currently a researcher in Microsoft Research AI4Sci Lab. 

She graduated with a PhD in theoretical chemistry in California Institute of Technology 

working with Prof. Thomas F. Miller III in 2022. Sherry received a B.S. degree with 

quadruple majors in Chemistry, Math, Biochemistry, and Molecular Biology and a 

minor in Computer Science from University of Wisconsin-Madison. 

She is interested in the interdisciplinary research between chemistry, physics, 

biology, and computer sciences, and passionate about bridging the mind gaps between 

different areas. Her current research focuses on applications of AI and quantum 

computing in Chemistry, such as molecular modelling by Molecular Orbital-Based 

Machine Learning (MOB-ML) method for electronic structure, and deep Quantum 

Monte Carlo (deep QMC).  

Leveraging the cutting-edge advancements of AI and quantum computing, her 

research focus on integrating and applying the state-of-the-art tools from AI and 

quantum computing to speed up the discovery in quantum chemistry, build a foundation 

model in quantum chemistry, and finally reveal a general approach to solve fundamental 

quantum many-body Schrödinger equation universally in chemical, biological, and 

material systems in order to facilitate predictions of molecular properties, unravel the 

underlying mechanisms of reactions and processes, and design novel drugs and 

materials. 
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I1-7:  

AI4Materials: From Simulation to Generation 

Hongxia Hao 

Microsoft Research AI for Science 

 

Accurate and fast prediction of materials properties is central to the digital 

transformation of materials design. However, the vast design space and diverse 

operating conditions pose significant challenges for accurately modelling arbitrarily 

material candidates and forecasting their properties. Recently, large modelling has 

shown its advancement in computer science and extends to biological science, but less 

in materials domain. In this talk, I will present our recent work MatterSim, a deep 

learning model that actively learned from large-scale first-principles computations for 

efficient and accurate predictions of broad material properties across elements, 

temperatures (0 to 5000 K) and pressures (up to 1000 GPa). Specifically, MatterSim 

predicts Gibbs free energies for a wide range of inorganic solids with near-first-

principles accuracy and achieves a 15 meV/atom resolution for temperatures up to 1000 

K compared with experiments. In addition, I will show that the model can serve as a 

“foundation model” for any atomistic system of interest and material generation. For 

example, the model can be fine-tuned for atomistic simulations at a desired level of 

theory or for direct structure-to-property predictions, achieving high data efficiency 

with a reduction in data requirements by up to 97%. 

  

Reference: 
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Dr. Hongxia Hao is a senior researcher at Microsoft Research AI for Science. She 

received her Ph.D. in Chemistry in 2019 working with Brenda Rubenstein at Brown 

University and conducted postdoc at UC Berkeley with Teresa Head-Gordon from 2019 

to 2022, with focus on accurate and efficient multi-scale simulation for complex 

systems such as strongly correlated systems and interfacial chemistry. Presently, she 

works at the intersection of materials/chemical science and machine learning, focusing 

on AI accelerated simulation and design for material and chemical system. 
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I2-1:  

Deep Energy Methods for solving PDEs  

Timon Rabczuk  

Institute of Structural Mechanics  

Bauhaus Universität Weimar  

 

This talk focuses on Deep Energy Methods for the solution of PDEs. Partial 

Differential Equations (PDEs) are fundamental to model different phenomena in 

science and engineering mathematically. Solving them is a crucial step towards a 

precise knowledge of the behavior of natural and engineered systems. In order to solve 

PDEs that represent real systems to an acceptable degree, analytical methods are usually 

not enough. One has to resort to discretization methods. For engineering problems, 

probably the best-known option is the finite element method (FEM). However, 

powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are 

also available. The fundamental idea is to approximate the solution of the PDE by 

means of functions specifically built to have some desirable properties.  

We explore Deep Neural Networks (DNNs) as an option for approximation. They 

have shown impressive results in areas such as visual recognition. DNNs are regarded 

here as function approximation machines. There is great flexibility to define their 

structure and important advances in the architecture and the efficiency of the algorithms 

to implement them make DNNs a very interesting alternative to approximate the 

solution of a PDE. While many formulations are based on Physics Informed Neural 

Network (PINNs) which are based on the strong form, we minimize the potential energy 

(or complementary) energy, which is very suitable for many problems in solid 

mechanics as they lead automatically to a thermodynamic and variational consistent 

formulation. 
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Timon Rabczuk is the Chair Professor of Computational Mechanics at Bauhaus 

University Weimar. He is a member of the European Academy of Sciences and Art, 

Academia Europea and Europe Academy of Science. His key research area is 

computational mechanics, AI for mechanics and advanced computational materials 

design. Prof. Rabczuk obtained his doctoral degree from Karlsruhe Institute of 

Technology (KIT) in Germany in 2002 which is followed by his postdoctoral research 

with Prof. Ted Belytschko in University of Northwestern. He became the Chair 

Professor in Computational Mechanics in his current institution in 2009. He has 

published so far 3 academic monographs, over 700 SCI papers, with H-Index of 111, 

attracting over 44000 times citations in Web of Science core collection. He has been 

awarded with the ERC Consolidator Grant from European Union, Feodor-Lynen Fellow 

from Humboldt Foundation and was listed as Highly Cited Researcher in both 

‘Engineering’ and ‘Computer Science’ in ISI Web of Science. 

 

  



International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

44 

 

I2-2: 

Machine learning based multiscale exploration and characterization of 2D 

materials 

Xiaoying Zhuang  

Leibniz University Hannover, Germany 

 

2D materials have attracted widespread attention in recent years. They have some 

unique properties that other usual materials do not have. For example, its electrical, 

mechanical, thermal and optical properties vary with the number of layers. Density 

functional theory (DFT) calculations are robust tools to explore the physical properties 

of pristine structures as well as to explore new type of 2D nanomaterials at their ground 

state, but they become exceedingly expensive for large systems or at finite temperatures. 

Classical molecular dynamics (CMD) simulations offer the possibility to study larger 

systems at elevated temperatures, but they require accurate interatomic potentials. We 

developed machine-learning interatomic potentials (MLIPs) passively fitted to 

computationally inexpensive ab-initio datasets which can be used to evaluate the 

complex physical properties of nanostructured materials, with only a fractional 

computational cost of conventional DFT-based solutions, cutting down from months to 

tens of hours. MLIPs offer extraordinary capabilities to marry the first-principles 

accuracy with multiscale modeling and thus enable the modeling of complex 

nanostructures at continuum level and has flexibility without paying unaffordable 

computational costs. We show outstanding and robust potential to develop fully 

automated platforms, to design, optimize and explore various properties of 2D materials 

and structures at continuum level, and with inherent precision and robustness. 
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Dr. Xiaoying Zhuang’s key research area is computational materials design for 

nano composites, metamaterials and nanostructures as well as computational methods 

for multiphysics and multiscale modelling. Dr. Xiaoying Zhuang has been awarded 

with technology in Trondheim and then as a faculty staff in Tongji University. In 2015, 

she was awarded with the Sofja-Kovalevskaja Programme from Alexander von 

Humboldt Foundation that brought her to Germany and she focused on the modelling 

and optimization of polymeric nanocomposite. Her ongoing ERC Starting Grant is 

devoted to the optimization and multiscale modelling of piezoelectric and flexoelectric 

nano structures. In 2018, she was awarded with Heinz-Maier-Leibnitz Prize and in 2020 

awarded with Heisenberg-Professor Programme of German Research Foundation 

(DFG). 
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I2-3: 

HH130: A Standardized Dataset for Universal Machine Learning Force Field and 

the Applications in the Thermal Transport of Half-Heusler Thermoelectrics 

Yuyan Yang1, Yifei Lin1, Ye Sheng2, Wenqing Zhang2, and Jiong Yang1* 
1Materials Genome Institute, Shanghai University, Shanghai, 200444, China 

2Department of Materials Science and Engineering, Shenzhen Institute for Quantum Science & 

Engineering, Southern University of Science and Technology, Shenzhen, 518055, China 

*E-mail: jiongy@t.shu.edu.cn 

 

With the advent of new research paradigms propelled by "AI for Science", the 

effective integration of data-driven core principles and artificial intelligence 

technologies has become a crucial issue in accelerating the design of novel materials, 

such as thermoelectrics, as well as the exploration of their applications, such as thermal 

conductivity. In this work, we utilized a combination of high-throughput computation 

and machine-learning interatomic potentials (MLIPs) to construct HH130, a 

standardized database tailored for the 130 Half-Heusler (HH) compounds in MatHub-

3d (http://www.mathub3d.net), which contains both MLIP models and datasets 

applicable to the thermal transport of HH thermoelectric materials. HH130 

encompasses 31,891 structures (including 54 total elements), generated by using the 

dual adaptive sampling method to cover a wide range of thermodynamic conditions, 

and will be provided freely on MatHub-3d. Furthermore, based on the datasets in 

HH130, we propose the concept of a small-scale, high-precision universal force field. 

Employing MACE (Multi-Atomic Cluster Expansion), we obtained the pretrained 

universal force field MACE-HH-v1.0. MACE-HH-v1.0 exhibits mean absolute error 

(MAE) values as low as 1.22 meV/atom and 8.4 meV/Å for energy and atomic forces, 

respectively, significantly lower than the SOTA universal force fields. Combining with 

the phonon Boltzmann transport equation, this universal force field is then applied to 

the evaluations of the thermal transport for HH compounds. The calculations of lattice 

thermal conductivities for HHs in the dataset, as well as the isovalent solid solutions, 

can reach the DFT accuracy, while for aliovalent and non-stoichiometric HHs, fine-

tuning by several additional dataset is necessary. This work demonstrates that a 

convincing prediction power can be achieved for high-order force constants and thermal 

transport, with the help of accurate datasets and universal force field models. 

 

Keywords: Machine-learning Interatomic Potentials, HH130, Universal Force Field, 

Thermal Transport 
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Prof. Jiong Yang received his Ph.D. from Shanghai Institute of Ceramics, Chinese 

Academy of Sciences, where he worked for two years after graduation. He was a 

postdoctoral follow in the University of Washington, USA, before the current job title 

as a professor in the Materials Genome Institute of Shanghai University. The research 

focus of Prof. Jiong Yang is on the theoretical understanding of the electron and phonon 

transport in semiconductors, high-throughput calculations and machine learning, as 

well as optimization and design of novel thermoelectric materials. 
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I2-4:  

Advancing Molecular Simulations with Machine-Learned Interatomic Potentials 

Yangshuai Wang 

Department of Mathematics, National University of Singapore  

 

The accuracy and efficiency of force fields are crucial for the success of molecular 

simulations. In recent years, machine-learned interatomic potentials (MLIPs) have 

emerged as a groundbreaking technique, bridging the significant gap between high-

accuracy ab initio electronic structure models and classical mechanistic models. MLIPs 

have rapidly evolved and are now an integral part of the computational materials 

science toolbox, evidenced by numerous successful applications leading to novel 

scientific discoveries. In this talk, I will provide a comprehensive overview of state-of-

the-art MLIPs, emphasizing their recent applications in materials science. I will begin 

with the Atomic Cluster Expansion (ACE) method, a linear model that offers 

exceptional predictive performance for small systems. I will discuss several variants of 

ACE and demonstrate their applications in twisted low-dimensional materials and 

metal-organic frameworks. To overcome the limitations of linear models, I will also 

introduce an advanced potential: the Message Passing Neural Networks (MPNN) 

potential based on ACE, known as MACE. MACE is specifically designed for complex 

systems, offering superior generalization and robustness. Additionally, I will present 

the latest foundation model, MACE-MP-0, built on the MACE architecture, 

highlighting its predictive power and the acceleration of predictions through fine-tuning 

for various material applications1. 

 

Reference 

1. A foundation model for atomistic materials chemistry,  

https://scholar.google.com/citations?view_op=view_citation&hl=zh-

CN&user=MDfgwG0AAAAJ&citation_for_view=MDfgwG0AAAAJ:UebtZRa9Y70C 
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Bio: 

 

Dr. Yangshuai Wang is currently the Peng Tsu Ann Assistant Professor (Visiting 

Fellow) in the Department of Mathematics at the National University of Singapore. 

Previously, he was a postdoctoral fellow in the Department of Mathematics at the 

University of British Columbia, where he worked under the supervision of Prof. 

Christoph Ortner from December 2021 to July 2024. He earned his PhD in 

computational mathematics from Shanghai Jiao Tong University in 2021. Dr. Wang's 

research interests include mathematical modeling, analysis, and their applications in 

materials and biomedical sciences. His work primarily focuses on advancing multi-

scale methods and machine-learned interatomic potentials (MLIPs) to better understand 

material behaviors and biological processes. 
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I2-5: 

Adapting Explainable Machine Learning to Study Mechanical Properties of 

Two-Dimensional Hybrid Halide Perovskites 

Yuxuan Yao1 , Dan Han2,3,4*, Kieran B. Spooner3 , Hubert Ebert4 , David O. Scanlon3 , 

Harald Oberhofer5* 
1 Department of Chemistry, TUM School of Natural Sciences, Technical University Munich, 

Lichtenbergstr. 4, 85748, Garching b. München, Germany 

2 School of Materials Science and Engineering, Jilin University, Changchun, 130012, China 

3 School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 

4 Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 

Butenandtstr. 5-13, Munich, 81377, Germany 

5 Department of Physics and Bavarian Center for Battery Technologies, University of Bayreuth, 

Universitätsstr. 30, 95447 Bayreuth, Germany 

*Corresponding Author: hand@jlu.edu.cn; Harald.Oberhofer@uni-bayreuth.de 

 

Two-dimensional (2D) hybrid organic and inorganic perovskites (HOIPs) have 

been used as capping layers on top of 3D perovskites to enhance their stability while 

maintaining the desired power conversion efficiency (PCE)1-3.Therefore, the 2D HOIP 

needs to withstand mechanical stresses and deformations, making the stiffness an 

important observable4.However, there is no model for unravelling the relationship 

between their crystal structures and mechanical properties. In this work, explainable 

machine learning (ML) models are used to accelerate the in silico prediction of 

mechanical properties of 2D HOIPs, as indicated by their out-of-plane and in-plane 

Young’s modulus. Our ML models can distinguish between stiff and non-stiff 2D 

HOIPs, and extract the dominant physical feature influencing their Young’s moduli, viz. 

the metal-halogen-metal bond angle. The optimal range of features is extracted from a 

probability analysis. Furthermore, the steric effect index (STEI) of cations is found to 

be a rough criterion for non-stiffness. Based on the strong correlation between the 

deformation of octahedra and the Young’s modulus, the transferability of the approach 

from single-layer to multi-layer 2D HOIPs was demonstrated. This work represents a 

step towards unravelling the complex relationship between crystal structure and 

mechanical properties of 2D HOIPs using ML as a tool. 

 

Keywords: Machine Learning, Elastic Properties, Explainability, Transferability Test 
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Bio：  

Dan Han is a Professor in the School of Materials Science and Engineering in Jilin 

University. She obtained her PhD in Condensed Matter Physics from East China 

Normal University in 2019 and subsequently conducted her postdoctoral research at 

University of Munich (Ludwig-Maximilians-Universität München) and the University 

of Birmingham. She focuses on the theoretical design of novel optoelectronic and 

thermoelectric semiconducting materials and experimental verification. She has been 

selected for the project of National-Level Young Talent (2023). Currently, she has 

published 34 journal articles with an h-index of 19, receiving over 1,700 citations. 

Among these, she is the first author or corresponding author on 15 papers published in 

journals such as Nat. Energy, J. Am. Chem. Soc., Phys. Rev. B, Phys., Matter, and Adv. 

Funct. Mater. One paper was an ESI highly cited paper and featured on the journal cover 

(Nat. Energy 2021, 6(10): 977-986), and another was highlighted as an editor's 

recommendation (APL Mater., 2023, 11(4): 041110). Dan Han also serves as a youth 

editorial board member for Information & Functional Materials and as a guest editor 

for a special issue of Frontiers in Chemistry. 
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I2-6: 

Guiding the next experiment: Bayesian Global Optimization versus 

Reinforcement Learning 

Turab Lookman 

AiMaterials Research LLC, USA 

 

With the development of self-driving laboratories, Bayesian Global Optimization 

(BGO) has been the method of choice in many recent studies since its use in accelerated 

materials science in 2015. I will show how Reinforcement Learning can be applied to 

accelerate discovery with application to solid phase change alloys. Moreover, I will 

present validation results on synthetic optimizing functions that indicate the relative 

merits of the approaches as a function of the number of descriptors, number of 

experiments, batch size, and how the methods seek high value regions of the 

objective/property as the experimental iterations proceed. 

 

Bio： 

Turab Lookman obtained his Ph.D. from Kings College, University of London,and 

held university appointments at Western University and the University ofToronto in 

Canada until 1999. He was elected Fellow of the American PhysicalSociety (APS) in 

2012 and a Laboratory Fellow at Los Alamos NationalLaboratory in 2018. His interests 

and expertise lie in hard and soft materialsscience and condensed matter physics, 

applied mathematics, andcomputational methods. His work on information directed 

approaches to materials discovery started in 2012 when he was funded by LANL/DOE 

toinvestigate how ML tools could be applied to accelerate materials discovery.Their 

work led to applying experimental design methods, such as BayesianGlobal 

Optimization, within an active learning frame work to find materials withtargeted 

response. He has published over 450 papers with 16.5K citations and H index 62. 
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I2-7: 

Creating Synergies between Experimental and Computational Approaches in 

Materials Design: Importance and Challenges of Clean Data 

Annette Trunschke 

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Berlin, Germany, 

trunschke@fhi-berlin.mpg.de 

 

Experimental data spaces are a key component of data-driven computational 

materials design.1The data must meet high quality standards in order to be used as input 

or benchmark in data science applications. This means that the measurements must be 

reliable and reproducible and the data must be provided in a structured format that 

conforms to the FAIR (findable, accessible, interoperable and reusable) principles. 

Data on functional materials in heterogeneous catalysis often do not meet these 

requirements.2One intrinsic reason for this is to be found in the metastable and dynamic 

nature of catalysts in their working state. This will be illustrated using examples of 

complex catalytic reactions important for the sustainable synthesis of chemical 

intermediates and transformations relevant for energy conversion and storage in a future 

low-carbon economy. 

In order to generate AI-ready data, there is a need to fundamentally change the way 

catalysis research is conducted. This includes the development of new methods for data 

acquisition, storage and transfer. We present a digitalization concept that involves 

working according to machine-readable Standard Operating Procedures (SOPs).3,4The 

process of data collection, standardized analysis, uploading to a database, and 

establishing relationships between database entries is fully automated.4 Data exchange 

within a local data infrastructure and beyond to overarching repositories is enabled. 

This approach is instrumental in laying the experimental groundwork for the upcoming 

transition to autonomous materials development. It is shown that “clean data” generated 

in such a way in combination with interpretable machine learning methods lead to a 

deeper understanding of complex physico-chemical correlations (descriptors) that 

determine catalytic properties and thus can drive the discovery of new catalytically 

active materials.5 

 

References: 

1. Bauer, S.; Benner, P.; Bereau, T.; Blum, V.; Boley, M.; Carbogno, C.; Catlow, C. R. A.; Dehm, G.; 

Eibl, S.; Ernstorfer, R., et al. Roadmap on Data-Centric Materials Science. Modelling and 

Simulation in Materials Science and Engineering 2024, 32 (6), 063301, DOI: 

https://dx.doi.org/10.1088/1361-651X/ad4d0d 

2. Marshall, C. P.; Schumann, J.; Trunschke, A., Achieving Digital Catalysis: Strategies for Data 

Acquisition, Storage and Use. 2023, 62, (30), e202302971, DOI: 

https://doi.org/10.1002/anie.202302971 

3. Trunschke, A., et al., Towards Experimental Handbooks in Catalysis. 2020, 63, 1683-1699, DOI: 

https://dx.doi.org/10.1007/s11244-020-01380-2. 

4. Moshantaf, A.; Wesemann, M.; Beinlich, S.; Junkes, H.; Schumann, J.; Alkan, B.; Kube, P.; 

Marshall, C. P.; Pfister, N.; Trunschke, A., Advancing Catalysis Research through FAIR Data 

mailto:trunschke@fhi-berlin.mpg.de
https://dx.doi.org/10.1088/1361-651X/ad4d0d
https://doi.org/10.1002/anie.202302971
https://dx.doi.org/10.1007/s11244-020-01380-2


International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

54 

 

Principles Implemented in a Local Data Infrastructure – A Case Study of an Automated Test 

Reactor. 2024, DOI: https://dx.doi.org/10.1039/D4CY00693C. 

5. Foppa, L.; Rüther, F.; Geske, M.; Koch, G.; Girgsdies, F.; Kube, P.; Carey, S. J.; Hävecker, M.; 

Timpe, O.; Tarasov, A. V.; Scheffler, M.; Rosowski, F.; Schlögl, R.; Trunschke, A., Data-Centric 

Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation. 

2023, 145, (6), 3427-3442, DOI: https://dx.doi.org/10.1021/jacs.2c11117 

 

Bio: 

Annette Trunschke leads the “Catalysis with Oxides Group” at the Department of 

Inorganic Chemistry at the Fritz Haber Institute in Berlin. She received her diploma in 

chemistry from the University of Jena and completed her doctorate in the field of 

catalysis. She was a Postdoctoral Researcher at the LMU Munich. Her research interests 

are in the field of activation of small molecules on catalyst surfaces in the context of 

sustainable synthesis of valuable chemical products, energy storage and conversion. 

She deals with catalyst synthesis, the investigation of dynamic processes at interfaces 

by operando spectroscopy, and digitalization and FAIR data in heterogeneous catalysis. 
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I2-8:  

Optimization of Process Conditions in the Synthesis of Perovskite Solar Cells and 

Methane Conversion Catalysts through Intelligent Robotic Laboratories 

Yea-Lee Lee1*, Jino Im1, Beom-Soo Kim1, Su-Hyun Yoo1, Yong Tae Kim1, Nam Joong 

Jeon1, Hyunju Chang1, Jungho Shin1 
1Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea 

 

The recent advancements in autonomous laboratories have revolutionized the 

accumulation of high-quality data for machine learning. By automating data generation 

through intelligent robotic arms and applying metaheuristic methods, researchers can 

optimize experimental variables and processes to achieve their objectives more 

efficiently. Intelligent robotic arms enable programmable data generation, accelerating 

the speed and efficiency of experiments around the clock. This automation not only 

increases the rate of data generation but also enhances the optimization and efficiency 

of the experimental process. We highlight two cases: the synthesis of perovskite solar 

cells and catalysts for olefin production. 

In the research on perovskite solar cells, the automated laboratory focuses on 

optimizing process parameters to produce high-efficiency devices. For example, 

controlling the anti-solvent dropping speed has proven crucial in ensuring thin-film 

uniformity, thereby improving device performance. By systematically correlating the 

dielectric constant of the anti-solvent with the dropping speed, we uncovered key 

factors previously overlooked in traditional approaches. Automated control surpasses 

human capabilities, resolving reproducibility issues inherent in conventional methods. 

Sequential optimization of additional process conditions promises groundbreaking 

progress in this field. 

In catalyst synthesis, the automated laboratory plays a crucial role in handling 

routine and modular experiments using robotic arms. This capability is exemplified in 

the synthesis of metal catalyst precursors on supports for olefin production. The 

unmanned experimental setup accommodates both solid and liquid samples, facilitating 

the synthesis process. This method, which incorporates generalizable experimental 

steps, holds the potential for a wide range of applications across diverse domains. 

 

Keywords: Machine Learning, Autonomous Laboratories, Solar Cell, Methane 

Conversion, Data-driven Materials Science 
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Bio： 

Dr. Jungho Shin has been serving as a Senior Researcher at the Korea Research 

Institute of Chemical Technology (KRICT) since 2019 and is currently Principal 

Researcher and the Head of the Chemical Data-Based Research Center. He completed 

his undergraduate studies in Chemistry at Sejong University in 2007, earned his Master’

s degree in Chemistry from Sejong University in 2009, and received his Ph.D. in 

Chemical and Biological Engineering from Yonsei University in 2015. His doctoral 

research focused on the design of catalytic materials using computational screening 

techniques in electrochemical fields such as fuel cells. 

Since 2015, Dr. Shin has participated in the NOMAD project of the EU Horizon 

2020 Programme in Europe, conducting postdoctoral research in collaboration with the 

Fritz Haber Institute and Humboldt University in Berlin. His work emphasizes the 

development of material databases for data-driven research and the creation of related 

platforms. In addition to leading the research data platform project at KRICT, he 

oversees a large-scale research project funded to build a materials research data 

ecosystem platform (5 years 6 months, 22 billion KRW). Alongside his work at KRICT, 

he continues to contribute to advancements in the field of chemistry and materials 

science. 
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I2-9: 

Data-Enabled Synthesis Predictions for Molecules and Materials 

Yousung Jung 

Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea 

E-mail: yousung.jung@snu.ac.kr 

 

 Reliable prediction of chemical reactivity remains in the realm of knowledgeable 

synthetic chemists. Automating this process by using artificial intelligence could 

accelerate synthesis design in future digital laboratories. While several machine 

learning approaches have demonstrated promising results, most current models use 

transformer-based architecture which is difficult to interpret and deviate from how 

human chemists analyze and predict reactions based on electronic changes. In this talk, 

I will talk about our recent efforts to learn organic and inorganic reactivity based on 

chemical rules and algorithms. The issues related to the current reaction datasets and 

hence the importance of data curation to further improve the models will be discussed. 

I will then propose a new organic synthesis prediction AI methodology that can predict 

the reaction mechanisms with various chemical conditions. For inorganic synthesis, I 

will present the results of using template-based bespoke models as well as large 

language models. Our results suggest that LLMs can be used as strong baseline for 

synthesizability predictions and precursor selection problems. 
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Yousung Jung is a Professor of Chemical and Biological Engineering at Seoul 

National Univeristy. He received the Ph.D. in Theoretical Chemistry from University 

of California, Berkeley (with Martin Head-Gordon). After a postdoctoral work at 

Caltech (with Rudy Marcus), he joined the faculty at KAIST in 2009. He then moved 

to SNU in early 2023. His research interests involve computational chemistry and 

machine learning to understand and design novel molecules and materials with desired 

properties, as well as predict their synthesis. He is the recipient of Shin Kook Joe 

Academic Award (2023, Korean Chemical Society), Hanseong Science Award (2021, 
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I3-1: 

Symbolic Regression in Materials Informatics: Applications and Challenges 

Runhai Ouyang 

Principal Investigator at the Materials Genome Institute, Shanghai University 

 

Symbolic regression (SR) is a key artificial intelligence method for generating 

interpretable descriptors in materials and chemistry informatics. Many SR methods 

have been developed in recent years, including the sure independence screening and 

sparsifying operator (SISSO)1. While SR has demonstrated great success in accelerated 

materials discovery, major challenges remain in representing complex atomistic 

structure for compact expressions. In this talk, I will review the current strategies to 

bypass this difficulty for SR application in materials and chemistry informatics based 

on the method SISSO, and present my perspective on future development in algorithm.  

 

References: 

1. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L. M. Ghiringhelli, Phys. Rev. Mater. 2, 

083802 (2018). 

 

Bio:  

 

Dr. Runhai Ouyang is a Principal Investigator at the Materials Genome Institute, 

Shanghai University. He obtained his PhD degree from the Dalian Institute of Chemical 

Physics, Chinese Academy of Sciences, in professor Wei-Xue Li’s group on theoretical 

catalysis. He conducted postdoctoral research at the University of Sydney in Australia, 

University of California Riverside in the United States, and the Fritz Haber Institute of 

the Max Planck Society in Germany. Currently, his research group focuses on machine 

learning and computational catalysis. 
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I3-2: 

Finding Descriptors of Catalytic Properties from Data for Catalyst Design  

with the Help of Artificial Intelligence 

Sergey V. Levchenko1* 
1Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, 

Russia 

*Corresponding Author: s.levchenko@skoltech.ru 

 

Activity and selectivity of a catalyst are in general difficult to predict, in particular 

from first principles. The problem lies in the extreme complexity of the relation between 

the atomic composition of a material and its catalytic properties. We demonstrate how 

to bridge this complexity with artificial intelligence (AI) on two examples. 

Single-atom metal alloy catalysts (SAACs) have recently become a very active 

frontier in catalysis research. However, discovery of new SAACs is hindered by the 

lack of fast yet reliable methods for predicting catalytic properties of the sheer number 

of candidate materials. We address this problem by applying the compressed-sensing 

symbolic-regression approach SISSO1,2 parameterized with density-functional inputs. 

We identify more than two hundred yet unreported candidates3, some of which are 

predicted to exhibit higher stability and efficiency than the reported ones. Our study 

demonstrates the importance of finding descriptors directly from data 

Moreover, using subgroup discovery, an AI approach that discovers statistically 

exceptional subgroups in a dataset, we develop a strategy for identification of 

combinations of most important parameters of a catalytic material. The approach is used 

to develop physical understanding of hydrogen activation at SAAC's, and design novel 

electrocatalysts for oxygen evolution reaction based on transition-metal-organic 

frameworks4.  

 

Keywords: DFT, Sompressed-sensing, Subgroup Discovery, Catalysis, Single-atom 

alloy Catalyst, Oxygen Evolution Reaction 
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Sergey V. Levchenko obtained M.Sc. from the Moscow Institute of Physics and 

Technology, and Ph.D. from University of Southern California, LA, USA in 2005. After 

a postdoc period at the University of Pennsylvania, PA, USA, he was a group leader at 

the Fritz Haber Institute of Max Planck Society in Berlin, Germany, and since 2018 he 

is a professor at Skoltech, Moscow, Russia. Sergey Levchenko is an expert in materials 

modelling using first-principles methods and artificial intelligence. 
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I3-3: 

What do we mean by new? Quantifying structural uniqueness in the era of 

generative crystal structure prediction 

Taylor D. Sparks1*, Andrew Falkowski1, Stanley Wessman1, and Sterling G. Baird2 
1Department of Materials Science & Engineering, University of Utah, Salt Lake City, USA 

2Acceleration Consortium, University of Toronto, Toronto, Canada 

*Corresponding Author: sparks@eng.utah.edu 

 

Crystal structure prediction has long fascinated scientists. There has been intense 

investigation over the last century ranging from simplistic rules to data-driven 

predictions and, most recently, generative artificial intelligence tools developed by 

academics and now deployed at scale by private companies like DeepMind. However, 

an unresolved question in this field relates to quantifying uniqueness of the output 

structures. For example, is a supposedly “new” structure really just a very slight 

distortion of an existing known structure or is it substantially different and how can we 

measure this difference? 

In this talk, I will attempt to answer this question and describe a tool my group has 

developed, DiSCoVeR 2.0, to quantify structural uniqueness. The original DiSCoVeR 

algorithm was built to quantify chemical uniqueness and use it in materials informatics 

work flows as a new axis for optimization. Here, we extend the approach using 

GridRDF as a distance metric for structural uniqueness and demonstrate how this tool 

works. We test this approach on a wide variety of structures including some that belong 

to families where we would expect a high similarity score and others with completely 

different motifs, coordination etc where we would expect a low similarity score. We 

also test the performance by using AFLOW structure encyclopedia entries to quantify 

overlap based on formula templates and symmetry operators.  

 

Keywords: Machine Learning, Crystal Structure Prediction, Generative Models, 

Predictive Modeling, Materials Science 
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Dr. Sparks is a Professor of Materials Science & Engineering at the University of 

Utah. He is originally from Utah and is an alumni of the department he now teaches in. 

He holds a BS in MSE from the University of Utah, MS in Materials from UCSB, and 

PhD in Applied Physics from Harvard University (advisor David Clarke). He was a 

Postdoctoral Researcher at the Materials Research Laboratory at UCSB (advisor Ram 

Seshadri). He is a former Royal Society Wolfson Visiting Fellow at the University of 

Liverpool and a recipient of the NSF CAREER Award. He was a speaker for 

TEDxSaltLakeCity and is active in MRS, TMS, and ACERS societies. He serves as an 

Associate Editor for the journals Computational Materials Science and Data in Brief. 

When he’s not in the lab you can find him running his podcast “Materialism,” creating 

materials educational content for his YouTube channel, or canyoneering with his 4 kids 

in southern Utah. 
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I3-4: 

AI-accelerated grand-canonical method for surface processes 

Yuanyuan Zhou 

Leibniz institute for crystal growth, Berlin, Germany 

 

The processes occurring at surfaces play a critical role in the growth, manufacture 

and performance of advanced materials, e.g., semiconductor thin film crystal growth. 

Such systems are controlled by atomistic processes, growth mechanisms, and their 

coupling involving a wide range of length and time scales that are difficult to probe by 

experiment alone. The ab initio grand-canonical method we developed enable to 

characterize the atomistic restructuring of surfaces under realistic conditions including 

configurational as well as the vibrational free energies. In this talk, I will present the 

predictive power of the grand-canonical method by taking oxides semiconductor as an 

example. Furthermore, I will talk about how AI assists grand-canonical method to 

tackle the complex surface processes at larger length and time scale. 

 

Bio： 

  

Dr. Yuanyuan Zhou is currently junior group leader in Leibniz institute for crystal 

growth, Berlin Germany. She received her B.S. and M.S. degrees both at Prof. Yanming 

Ma´s group in Jilin University. Then, she moved to the Fritz Haber Institute of the Max 

Planck Society and obtained her Ph.D. under the supervision of Prof. Luca M. 

Ghiringhelli and Prof. Matthias Scheffler. In her Ph.D. she focused on the development 

of ab initio statistical mechanics method to determine the surface phase diagram 

including anharmonic contributions. Later, she conducted the postdoctoral research 

with Prof. Jens K. Nørskov in Technical University of Denmark and mainly studied the 

mechanism of electrochemical ammonia synthesis by closely collaborating with Prof. 

Ib Chorkendorff´s team. Her main research interest is to build ab initio quantitative 

modelling for the process occurring at surfaces and interfaces from the atomistic scale 

to the macroscopic scale and vice versa. 
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I3-5: 

Language Data-Driven Machine Learning Design of New Materials  

Lei Zhang1* 
1Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of 

Information Science and Technology, Nanjing, China 

*Corresponding Author: 002699@nuist.edu.cn  

 

Data-driven methods based on language models (LM) and machine learning have 

attracted the attention of materials scientists for designing and analyzing new materials 

within a highly complex virtual design space. This presentation will discuss how 

language models and data-driven methods can be applied to explore new functional 

materials. I will highlight recent progress in our group on data-driven materials design 

and prediction (e.g., photovoltaic and halide perovskite materials), with an emphasis on 

different data types and sources, particularly textual data using natural language 

processing (NLP) techniques and language models. The presentation will cover the 

data-driven materials design workflow involving high-throughput 

computation/experimentation, data mining, traditional machine learning, genetic 

algorithms, first-principles calculations, and molecular dynamics. A multimodal data-

driven approach that combines language models, density functional theory, and genetic 

algorithms will be emphasized. Additionally, I will report on the development and 

applications of NJmat, our data-driven and artificial intelligence software for materials 

science, which is particularly user-friendly for experimentalists. 

 

Keywords: Data-Driven, Language Model, Machine Learning, First-Principles 

Calculation  
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Electronic structure theory plays a central role in understanding properties of 

crystalline materials. Among all the ab initio methods, density functional theory (DFT) 

is the most popular choice due to its balance between accuracy and computational cost, 

and has been applied successfully to numerous realistic materials. However, the 

computations of many advanced properties require extremely dense samplings of the 

Brillouin zone, resulting in a serious challenge for direct DFT calculations. The theory 

of maximally localized Wannier functions (MLWFs) provides an elegant framework to 

tackle such issues. MLWFs are localized orbitals for crystals, resembling the atomic 

orbitals or bonding/anti-bonding orbitals from chemical intuition. Moreover, they are 

low-rank approximations of the original electronic structure, and enable accurate and 

efficient Wannier interpolation of quantum-mechanical operators1. 

In this work, we first develop two automated algorithms to construct MLWFs, 

addressing the cases of metals and insulators, respectively2,3. Then, we implement fully 

automated workflows that only require the crystal structure as input, and robustly 

generate MLWFs. On top of these, we build three MLWF databases for over 20,000 3D 

inorganic crystals, over 5000 3D insulators, and over 2000 exfoliable 2D crystals, 

respectively. These databases are the electronic-structure genome: they are efficient 

compressed encodings of the electronic structure of each material. Moreover, they are 

also accurate interpolators, since they hide the details of the underlying electronic-

structure calculations, and subsequent property computations can be fully performed 

within the Wannier representation. To demonstrate the power of this notion and the 

benefits of our databases, we choose three applications for discovering novel materials: 

(a) high-performance thermoelectrics, (b) materials with large nonlinear Hall effect, 

and (c) heterostructures hosting two-dimensional electron gases. 

 

Keywords: Electronic structure, Maximally localized Wannier functions, High 

throughput, Materials discovery 
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A Large Multi-Modality Model for Chemistry and Materials Science 

Zihan Zhao1, Bo Chen1,2, Jinbiao Li1,2, Da Ma, 1 Lu Chen1,2*, Kai Yu1,2*, Xin Chen2* 
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Rapid developments of AI tools are expected to offer unprecedented assistance to 

the research of chemistry and materials science. However, neither existing task-specific 

models nor emerging general large language models (LLM) can cover the wide range 

of data modality and task categories. The specialized language and knowledge used in 

the field including various forms of molecular presentations and spectroscopic methods, 

hinders the performance of general-domain LLMs in the disciplines.  

We first developed a 13B LLM trained on 34B tokens from chemical literature, 

textbooks, and instructions. The resulting model, ChemDFM1, can store, understand, 

and reason over chemical knowledge while still possessing generic language 

comprehension capabilities. In our quantitative evaluation, ChemDFM surpasses GPT-

4 on most chemical tasks, despite the significant size difference. In an extensive third-

party test2, ChemDFM significantly outperforms most of representative open-sourced 

LLMs.  

We further developed a multi-modal LLM for chemistry and materials science: 

ChemDFM-X. Diverse multimodal data includes SMILES, GNN, mass spectroscopy 

and IR spectroscopy, etc, generating a large domain-specific training corpora 

containing 7.6M data. ChemDFM-X is evaluated on extensive experiments of various 

cross-modality tasks. The results demonstrate the great potential of ChemDFM-X in 

inter-modal knowledge comprehension.  

This study illustrates the potential of LLM as a co-scientist in the general area of 

chemistry and materials science tasks. A few examples using ChemDFM-X to assist 

material research will be demonstrated. 
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potential co-scientists.  
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Unexpected Failure and Success in Data-Driven Materials Science 

Kangming Li, Jason Hattrick-Simpers  
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High-throughput computation and experiments combined with data-driven 

methods have the promise to revolutionize materials science. Central to this paradigm 

is machine learning (ML) for autonomous discovery in place of traditional approaches 

relying on trials-and-errors or intuitions. However, biases in the use of ML attract little 

attention. These biases can make the use of ML less effective or even problematic, 

thereby decelerating materials discovery. This talk features four examples1-4from our 

recent studies on unexpected failure modes in robustness and redundancy as well as 

unexpected success in prediction tasks considered as challenging.  

First, we show that model performance from community benchmarks does not 

reflect the true generalization in materials discovery. Using Materials Project database 

as the case study, we reveal that ML models can achieve excellent performance when 

benchmarked within an earlier database version, but these pretrained models have 

severely degraded performance on new materials from the latest database. In the second 

example on data redundancy across large materials datasets, we find that up to 95% of 

data can be removed without impacting model performance, highlighting the 

inefficiency in existing data acquisition practices. Next, we reveal the biases in 

interpreting generalization capability of ML models. With our recently curated dataset 

for high entropy materials, we demonstrate that ML models trained on simpler 

structures can generalize well to more complex disordered, high-order alloys, thereby 

unlocking new strategies to explore the high entropy materials space. Through a 

comprehensive investigation across large materials datasets, we reveal that existing ML 

models can generalize well beyond the chemical or structural groups of the training set. 

Application domains of ML models may therefore be broader than what our intuitions 

define. In addition, we also show that scaling up dataset size has marginal or even 

adverse effects on out-of-domain generalization, contrary to the conventional scaling 

wisdom. These results call for a rethinking of usual criteria for materials classifications 

and the strategy for neural scaling.   

 

Keywords: Machine Learning, Out-Of-Distribution Generalization, DFT calculations, 

High-Entropy Materials. 
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University. Dr. Li is a computational materials scientist specialized in multiscale 
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simulations, and molecular dynamics. He is also passionate about building trustworthy 

and interpretable AI for science. His current work involves developing AI-guided high-

throughput computational workflows interfaced with experiments, to discover novel 

inorganic solid-state compounds for advanced materials and energy solutions. 
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Atomistic or molecular calculations of physical/chemical properties of molecules 

and crystals necessarily involves the first step of geometric structural relaxation. 

Recently, the discovery of numerous new materials and the design of complex material 

structures, such as the two million new crystals discovered by Google DeepMind1 and 

twisted multilayer 2D materials with large crystal structures2, have significantly 

challenged our computational ability to comprehensively analyze their properties. This 

is because the critical first step of structural relaxation remains a bottleneck due to the 

high computational demands and poor scalability of traditional ab initio and machine 

learning (ML) iterative structural relaxation algorithms.  

Recognizing this challenge, we have overcome these limitations with a universal 

and trustworthy deep generative model (named DeepRelax3), designed for rapid, 

accurate, and scalable material relaxation without any iterative process. DeepRelax 

learns the equilibrium structural distribution, enabling it to predict relaxed structures 

directly from their unrelaxed counterparts. The ability to perform structural relaxation 

in just a few hundred milliseconds per structure, combined with the scalability of 

parallel processing, makes DeepRelax particularly useful for large-scale virtual 

screening.  

To demonstrate the generalizability of DeepRelax, we benchmarked it against five 

different databases: X-Mn-O oxides, Materials Project, Computational 2D Materials 

Database, layered van der Waals crystals, and 2D structures with point defects. In these 

tests, DeepRelax exhibited both high accuracy and efficiency in structural relaxation, 

which was further validated by DFT calculations. Finally, we integrated DeepRelax 

with an implementation of uncertainty quantification, enhancing its reliability and 

trustworthiness in material discovery. This work provides an efficient and trustworthy 

method to significantly accelerate large-scale computations, offering substantial 

advancements in the field of AI for science3.  

 

Keywords: Crystal structural relaxation, E(3)-equivariant graph neural networks, 

Large-scale computations, Uncertainty quantification, AI for Science  
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From computational screening to the synthesis of a promising OER catalyst 

Zhenpeng Yao 

Shanghai Jiaotong University, Shanghai, China  

 

The search for new materials can be laborious and expensive. Given the challenges 

that mankind faces today concerning the climate change crisis, the need to accelerate 

materials discovery for applications like water-splitting could be very relevant for a 

renewable economy. In this work, we introduce a computational framework to predict 

the activity of oxygen evolution reaction (OER) catalysts, in order to accelerate the 

discovery of materials that can facilitate water splitting. We use this framework to 

screen 6155 ternary-phase spinel oxides and have isolated 33 candidates which are 

predicted to have potentially high OER activity. We have also trained a machine 

learning model to predict the binding energies of the *O, *OH and *OOH intermediates 

calculated within this workflow to gain a deeper understanding of the relationship 

between electronic structure descriptors and OER activity. Out of the 33 candidates 

predicted to have high OER activity, we have synthesized them and characterized them 

automatically using linear sweep voltammetry to gauge their performance in OER. 

From these three catalyst materials, we have identified a new material, Co2.5Ga0.5O4, 

that is competitive with benchmark OER catalysts in the literature with a low 

overpotential of 220 mV at 10 mAcm-2 and a Tafel slope at 56.0 mV dec-1. Given the 

vast size of chemical space as well as the success of this technique to date, we believe 

that further application of this computational framework based on the high-throughput 

virtual screening of materials can lead to the discovery of additional novel, high-

performing OER catalysts. 
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From imaginary phonons to a universal interatomic potential: the case of BiFeO3 
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The rise of AI-driven interatomic potentials fitted on electronic structure 

calculations has significantly reduced the compromise between accuracy and scalability 

and thus opened new avenues for exploring and designing advanced materials. While 

the development of advanced packages facilitates the creation of such potentials, 

creating the training set remains challenging, although crucial to the quality of the 

potential. In this work, we present a systematic, although simple, way of generating a 

complete training set of first-principles density functional theory data and use deep 

learning, as implemented in DeePMD1,2, to construct a universal potential.  

To illustrate our approach, we chose the prototypical magneto-electric multiferroic 

material, BiFeO3. This material is ferroelectric in its R3c ground state and becomes 

paraelectric with a perfectly cubic Pm 3̅ m structure (5-atom cell) at very high 

temperatures. Nevertheless, the transition between these structures is debated, and no 

previous first-principles models could accurately match experimental observations.  

The training set is constructed by condensing the unstable phonons calculated in 

the high-symmetry cubic structure (Pm3̅m) and fully relaxing the obtained structures 

to reveal local minima on the Born-Oppenheimer energy surface. The energy surface is 

then systematically spanned by linearly interpolating between the different minima. 

All calculations included in the training set were limited to 2x2x2 supercells (40-

atom cells) under no strain and at 0 K. Nevertheless, our model can accurately capture 

the energy and forces for a wide range of structures with sizes going beyond the 40-

atom supercells, account for phase transitions under large epitaxial strain and accurately 

reproduce the phase transitions for the whole temperature range experimentally 

accessible. Interestingly, we identify a sequence of phase transitions involving three 

intermediate phases at high temperatures, consistent with recent phenomenological 

models3.  

Our work illustrates the importance of the training set. It provides a powerful 

methodology for creating a universal potential with strong generalization capabilities, 

as evidenced by its robustness under strain, temperatures and system size, at a minimum 

cost. 

 

Keywords: Deep Learning, Interatomic Potential, Complex Oxides, Molecular 
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Polymer nanocomposites (PNCs) are widely used in automobile tire manufacturing 

industry. Concerning the long-standing energy crisis, designing and fabricating PNCs 

with both high strength and low energy consumption has gained numerous scientific 

interests. Inspired by nanoparticle-based supramolecular materials, the processed 

nanoparticles (NPs), as one of the synthetic monomers to build polymer chains, can 

essentially enhance the strength and stability of the filler network, thus achieving high 

strength and low energy consumption in the novel PNCs. We constructed the novel 

nanopolymer composites by embedding nanoparticles into polymer chains through 

coarse-grained molecular dynamics simulations. The structural, dynamic, mechanical 

and viscoelastic properties influenced by the content and size of the NPs are 

systematically explored. Compared to traditional PNCs, this novel PNCs exhibits a 

relatively higher glass transition temperature at the same content of NPs. Moreover, it 

was found that the formation of a zigzag-interlock structure with an intermediate 

strength, namely between the physical and chemical interaction, allows for a more 

prominent mechanical reinforcing efficiency than traditional PNCs. Finally, the 

dynamic mechanical properties of this novel PNCs, such as the loss factor and 

hysteresis loss, exhibit a much smaller energy dissipation than those of traditional PNCs. 

In general, our work confirms that this novel PNCs is an excellent candidate to exceed 

the traditional PNC by possessing a more significant nano-reinforcing effect and a 

much less dynamic hysteresis, opening a good avenue for the design and fabrication of 

next-generation elastomer nanocomposites tailored for green automobile tires. 

 

Keywords: Nanopolymer, Reinforcement, Viscoelasticity, Molecular Dynamics 

Simulation  

 

Figure 1. This novel PNCs is an excellent candidate to exceed the traditional PNC by possessing a more 

significant nanoreinforcing effect and a much less dynamic hysteresis toward next-generation elastomer 

nanocomposites tailored for green automobile tires. 
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The advent of machine learning (ML) techniques has revolutionized the field of 

materials science, offering new pathways for discovering and designing advanced 

materials. Soft magnetic high-entropy alloys (HEAs) play a critical role in power 

conversion, magnetic sensing, magnetic storage and electric actuating, which are 

fundamental components of modern technological innovation. Therefore, the rational 

design of soft magnetic alloys holds substantial scientific and commercial value. 

With excellent comprehensive performance, emerging compositionally complex alloys 

(CCAs) with high chemical complexity have garnered significant interest. The huge 

composition search space of CCAs provides both challenges and opportunities for 

discovering new high-performance magnetic materials. The traditional alloy design 

method relying on scientific intuition and a trial-and-error strategy could be inefficient and 

costly for magnetic CCAs. Accordingly, with great capacities for nonlinear and adaptive 

information processing, machine learning (ML) has shown great potential in magnetic CCA 

studies. This REVIEW talk would focus on the recent progress in the application of ML 

algorithms to predict the properties of HEAs, mainly by examining the various inspiring 

applications of ML methods in magnetic HEAs for phase prediction, property optimization 

and multi-objective optimization, and further discusses the future directions for 

unleashing the full potential of ML methods in magnetic HEAs’ studies, enabling the rapid 

identification of HEAs with tailored properties. Our findings underscore the importance 

of integrating computational models with experimental validation to accelerate 

materials discovery and design. 
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1DP Technology, Beijing 100080, China  
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Materials are fundamental to various key fields, yet their development has 

traditionally relied on a costly and time-consuming trial-and-error approach. MatSpace 

aims to revolutionize materials design and optimization by integrating state-of-the-art 

artificial intelligence with robust physical modeling. This combination significantly 

reduces reliance on traditional methods, making property prediction more efficient and 

accurate. 

Our platform features advanced atomistic simulations like Density Functional 

Theory (DFT) and Molecular Dynamics (MD), providing insights into the atomic-level 

behavior of materials. These simulations help predict properties and optimize materials 

before synthesis. Additionally, automatic characterization tools such as Scanning 

Electron Microscopy (SEM) offer detailed microstructural information. 

The platform’s intuitive interface ensures ease of use, facilitating seamless data 

analysis and interpretation. With effective multi-source data management, the platform 

aids in understanding the intricate structure-property relationships crucial for materials 

design. By accelerating the engineering of next-generation materials, it enhances 

efficiency and broadens potential applications. 

MatSpace supports industries including advanced batteries, high-performance 

catalysts, innovative polymers, durable metals and alloys, and cutting-edge organic 

electronics. By streamlining simulations, characterization, and data management, it 

empowers researchers and engineers, paving the way for rapid advancements and the 

creation of high-performance materials tailored to specific industrial needs. In summary, 

MatSpace leverages advancements in artificial intelligence and physical modeling to  

transform the materials development process, driving innovation and efficiency across 

multiple industries. 

 

Keywords: DFT, Molecular Dynamics, Characterization Tools, Materials Science 

 

References 

1. Zhang, Duoduo et al. “DPA-2: a large atomic model as a multi-task learner.” (2023). 

  



International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

83 

 

Bio： 

Hui Zhou received his B.S. degree from the School of Chemistry and Molecular 

Engineering at the Nanjing Tech University (Nanjing, China) in 2018 and received his 

Ph.D degree under the supervision of Prof. Xue-Qing Gong at the Centre for 

Computational Chemistry at East China University of Science and Technology 

(Shanghai, China) in 2023. His current research interests are focused on the Materials 

Software Development in the AI4S Era. 

  



International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

84 

 

C2-6: 
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Advances in machine learning technologies make it possible to automatize material 

characterizations, which are indispensable for the near-future implementation of 

autonomous experimentation for solid state materials. High-resolution transmission 

electron microscopy (HRTEM) allows to study the atomic structure of solid materials 

with a resolution of sub-Angstrom. By matching experimental and simulated images, 

unknown experimental parameters and crystal structures can be determined. However, 

this process entails strong domain expertise and can be time consuming. 

In this work, we implement and apply a Bayesian optimization-based approach to 

automatize the image matching processes. Combined with phase contrast corrected 

transmission electron microscopy, it is demonstrated that 3D crystal structures of the 

specimen can be reconstructed from single HRTEM images. To be specific, after 

appropriately defining loss functions between the experimental and simulated images 

to capture both the global and local image features, our method not only achieves an 

exact match between experimental and simulated images in terms of absolute image 

contrast, but also naturally identifies unknown experimental parameters, optimizes 

atomic positions, and reveals surface morphology with atomic resolution. This 

approach offers significant advantages for 3D studies of radiation-sensitive crystals and 

opens new possibilities for automated HRTEM image analysis. 

 

Keywords: Bayesian Optimization, High-Resolution Transmission Electron 

Microscopy, 3D crystal structure reconstruction 
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I am Xiankang Tang, a Ph.D. candidate at TU Darmstadt, Germany, currently 

affiliated with the Theory of Magnetic Materials Group, which I joined in late 2023. 

My research focuses on the simulation of Transmission Electron Microscopy (TEM) 

and the application of machine learning in materials science. Over the past year, I have 

gained significant expertise in TEM simulation using tools like Dr. Probe and abTEM, 

with a deep understanding of the underlying multiple scattering approach. 

In my recent work, I developed a machine learning framework based on Bayesian 

optimization to accurately retrieve TEM device parameters and optimize atomic 

positions. I had the opportunity to present these findings at the DPG meeting in Berlin, 

where my research received positive feedback and sparked interest in further 

applications of these techniques in the field. 

My academic journey began with a Bachelor's degree in Mechanical Engineering 

from Shandong University, China, followed by a Master's degree in the same field at 

Shandong University. Now, at TU Darmstadt, I am continuing to explore the frontiers 

of TEM simulation and machine learning to advance our understanding of magnetic 

materials at the atomic level. 
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Isotropic materials are required to adhere to various mechanical principles due to 

their limited thermal stability. For instance, it is essential for Poisson’s ratio to be within 

the range of −1 to 0.5, and the longitudinal wave velocity must exceed the transverse 

wave velocity. Nevertheless, perfect crystals, as anisotropic materials, have the ability 

to defy conventional rules. Through the integration of high-throughput processes and 

first-principles calculations, a comprehensive exploration of known materials was 

conducted, resulting in the establishment of a database featuring an extreme anisotropic 

mechanism. This included the identification of abnormal Poisson’s ratios (with the 

directional Poisson ’s ratio ranging from −3.00 to 3.67), the discovery of extreme 

negative linear compressibility, the determination of the upper and lower limits of the 

sound velocity, and other associated properties. Several materials with abnormal 

Poisson’s ratios (< −1 or > 0.5) were listed, and their peculiar mechanical behavior, 

wherein the volume decreased counterintuitively with uniaxial tension, was discussed. 

Finally, the study focused on the velocities of longitudinal and transverse waves, with 

specific emphasis on materials exhibiting transverse wave velocities that exceeded the 

longitudinal wave velocities. 

 

Keywords: Mechanical and Acoustic Properties; Compressive Strength; Stress 
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Large Language Models (LLM) are used for large-scale extraction and 

organization of unstructured data owing to their exceptional natural language 

processing capabilities. Empowering materials design, extensive data from experiments 

and simulations are scattered across numerous scientific publications, but high-quality 

experimental databases are lacking. We present an LLM approach that searches 

literature to create structured material property databases, overcoming previous 

limitations in integrating long contextual data and discerning complex inter-entity 

relationships by incorporating Kolmogorov-Arnold Networks (KAN). Our application 

organizes materials-bandgap data using learnable activation functions and spline-

parametrized functions for dynamic categorization. The system learns from diverse 

sources by combining experimental results with simulation data, ensuring accuracy and 

efficiency. This KAN-based LLM demonstrates superior accuracy in organizing 

materials-bandgap data, with potential adaptability for various applications in materials 

science and other fields requiring structured data extraction. This integration has the 

potential to significantly enhance scientific research by improving data-driven 

discovery and contributing to technological and scientific progress. 

 

Keywords: Machine Learning, Large Language Models, Data Mining, Materials 

Science 
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Materials-Discovery Workflows Guided by Symbolic Regression: Identifying 

Acid-Stable Oxides for Electrocatalysis 

Akhil S. Nair ∗, Lucas Foppa, Matthias Scheffler 
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∗Corresponding Author: nair@fhi-berlin.mpg.de 

 

AI-driven workflows will accelerate materials discovery by efficiently guiding 

experiments or simulations towards materials with desired properties. However, 

probabilistic AI approaches commonly used in these workflows are limited by the 

relatively small size of high-quality datasets and they rely on typically unknown, low-

dimensional representations. Here, we train ensemble of symbolicregression models in 

order obtain not only (mean) predictions, but also their variance. This opens the 

opportunity to use symbolic regression in sequential-learning workflows for materials 

discovery. Indeed, we leverage the prediction uncertainties derived from the variance 

across the ensemble models to guide the acquisition of data in previously unexplored 

regions of materials space. We employ the sure-independence-screening-and-

sparsifying-operator (SISSO) symbolic-regression approach, which identifies 

analytical expressions for the target property using moderate-sized datasets. These 

expressions are low-dimensional representations depending only on few key 

physicochemical parameters, out of many offered candidates. Importantly, SISSO 

provides materials-property maps covering the entire materials space, further reducing 

the risk that the workflow misses promising materials that were overlooked in the initial 

dataset. We demonstrate the effectiveness of the SISSOguided workflow by identifying 

acid-stable oxides for the water-splitting reaction through DFT-HSE06 calculations. 

Keywords: SISSO, DFT, oxides, electrocatalysis, material discovery 
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Battery prognosis from impedance spectroscopy using machine learning 

Yunwei Zhang1* 
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Forecasting the state of health and remaining useful life of Li-ion batteries is an 

unsolved challenge that limits technologies such as consumer electronics and electric 

vehicles. Here, we build an accurate battery forecasting system by combining 

electrochemical impedance spectroscopy (EIS) — a real-time, non-invasive and 

information-rich measurement that is hitherto underused in battery diagnosis—with 

machine learning method. The models are trained on an established open-source 

electrochemical impedance spectroscopy (EIS) database1, including over 20,000 EIS 

spectra of commercial lithium-ion batteries collected at different states of health, states 

of charge and temperatures. Our models take the entire spectrum as input, without 

further feature engineering, and automatically determines which spectral features 

predict degradation. Our models accurately predict the remaining useful life, even 

without complete knowledge of past operating conditions of the battery. Our results 

demonstrate the value of EIS signals in battery management systems. 

 

Keywords: Machine Learning, Battery Health Prediction, Battery Degradation, Battery 

Diagnosis. 
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High-throughput calculation of spin Hall conductivity in 2D materials    
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*Corresponding Author: jiaqi.zhou@uclouvain.be  

The 2D van der Waals (vdW) materials have emerged as potential building blocks 

for ultra-fast and low-power spintronic devices, which manipulate the spin current 

rather than the charge current. Through the spin Hall effect, the spin current can be 

generated by the charge current, and the conversion efficiency is denoted by the spin 

Hall ratio (SHR), defined as the ratio of spin Hall conductivity (SHC) to charge 

conductivity. Accurate predictions of spin and charge transport properties are essential 

for designing high-performance spintronic devices.   

Maximally localized Wannier functions1 are widely used to study electronic and 

spintronic transports since the computational cost can be greatly reduced by Wannier 

interpolation. In the present work, a high-throughput Wannierization has been 

implemented based on the MC2D database2 which provides exfoliable vdW 

monolayers. All the rare-earth-element-free materials with up to 6 atoms per unit cell 

were considered, leading to 426 monolayers, including 216 semiconductors and 210 

metals. Considering the spin-orbit coupling, Wannierizations were performed on all 426 

materials using AiiDA. 

With the Wannier tight-binding Hamiltonians, SHCs of all the monolayers were 

calculated using Kubo formula, and applied to different systems for further research. 

Firstly, with the charge conductivity calculated by electron-phonon coupling3, SHRs 

are investigated in the doped semiconductors, and a descriptor for high SHR is proposed 

to screen materials4. Secondly, taking SHC as an indicator, Rashba effect and 

topological properties in the pristine semiconductors are researched, revealing three 

unreported quantum spin Hall insulators5. Finally, we present the topological 

semimetals and ultrahigh SHCs in the metallic monolayer5.  

This work illustrates the efficacy of high-throughput calculation for discovering 

materials with exotic properties, providing promising candidates for the design of 

electronic and spintronic devices.  

 

Keywords: 2D Materials, High-throughput Calculation, Spin Transport  
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Perovskite oxides are a class of very useful materials that possess a wide range of 

functional properties, such as ferroelectricity, piezoelectricity, and electrocaloric effects, 

etc., stemming from their diverse structural phase transitions and complex lattice 

potential energy surfaces. Theoretically, the structure and properties of perovskite 

oxides under finite temperatures and near-operating conditions can be accessed through 

large-scale atomistic simulations, which rely on the development of effective lattice 

potentials, including classical potentials that use simple analytic functions, as well as 

machine-learning potentials1,2. A critical aspect of developing an accurate effective 

potential is to construct a comprehensive training dataset that provides adequate 

sampling of the potential energy surface. 

In this work, instead of the commonly used method of sampling the potential 

energy surface via molecular dynamics, we explore an alternative approach to 

constructing training datasets through elaborate design. Starting from the perovskite 

cubic reference structure and guided by lattice instabilities, we systematically and 

extensively explore the potential energy surface, and include as many stationary phases 

as possible into the training dataset. We demonstrate the application of this strategy in 

developing a Taylor polynomial potential for CaTiO3 using MULTIBINIT3 and a 

machine-learning potential for PbZrO3 using DeePMD4. The developed models 

successfully capture the large number of stationary phases and provide reasonable 

predictions for finite-temperature properties. Furthermore, the Taylor polynomial 

potential has an advantage of physical transparency and allows for intentionally tuning 

the model parameters to better understand the underlying physics5, while the machine- 

learning potential offers high reproducing accuracy for complex potential energy 

surfaces, making it highly suitable for accurate material simulations. 

Work supported by IPD-STEMA program from ULiège, PROMOSPAN project 

from FNRS (T.0107.20) and TSAR project from EU H2020 RI program (No. 964931). 
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Advances in machine learning (ML) and artificial intelligence (AI) are 

transforming material discovery. These methods significantly accelerate exploration of 

large feature spaces but often struggle with small datasets and researcher biases. 

Additionally, model development for multi-promoter catalyst systems is challenged by 

complex interaction between catalyst components, often requiring expensive ab-initio 

calculations. This in turn, hampers development of new descriptors for design of novel 

materials. 

In this work, we employ a data-driven approach tailored for small datasets that does 

not rely on prior knowledge of the studied system. Initially, an extended set of 

descriptors are generated through applying commutative operations to open-access 

atomistic properties. Additionally, interactions between catalyst components are 

accounted for through introducing intrinsic promoter properties such as energies of 

alloy and metal oxide formation. This method is applied exemplarily to study the 

complex RhMn+promoter/SiO2 catalyst system1,2, which is tested in high-throughput 

experimentation for syngas to ethanol (StE) reaction. 

The cross validation across multiple ML algorithms leads to a model with high 

accuracy. By leveraging only open-access material libraries, new descriptors are 

obtained which go beyond the mere correlation and provide insight into causation of 

observed performance trends. More importantly, the obtained model is capable of 

predicting new materials which were not used in training step. Experimental studies 

show very good agreement with model prediction, confirming an efficient workflow 

for accelerated material discovery3. Additionally, the respective data and metadata 

curation is carried out according to developed standards for digital catalysis research, 

as outlined by NFDI4Cat4 consortium. 
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Machine-learned interatomic potentials (MLIPs) have proven to be a reliable and 

efficient tool in materials science. In this study, we applied one of the MLIPs, namely 

the Moment Tensor Potential (MTP)1, along with an algorithm for its active learning 

(AL)2, to screen multi-component alloys and predict some of their properties. For the 

calculation of the training sets, we used Density Functional Theory (DFT). 

First, we investigated the ductility of the Mo-Nb-Ta multi-component alloy with 

the active-learned MTP3. All compositions of Mo-Nb-Ta containing less than 20% Mo, 

along with both Nb and Ta, are predicted to be ductile using the Rice-Thomson criterion. 

Next, we used a combination of the MTP and the coherent potential approximation 

(CPA) to characterize solid solution strengthening and ductility of the Mo-Nb-Ti-Ta 

alloy4. Our results suggest that increasing the Mo and Nb content, while adjusting the 

Ta content, can improve the ductility of the equiatomic Mo-Nb-Ti-Ta alloy without 

sacrificing strength. Finally, we computed the total magnetic moment and lattice 

constant of the Fe-Al alloy. For this purpose, we used a recently developed magnetic 

MTP and an algorithm for its parameterization, including fitting to magnetic forces5. 

We predicted a decrease in the total magnetic moment with an increase in Al 

concentration. We also captured the experimentally observed anomalous volume-

composition dependence in the Fe-Al system. 

Thus, in this study, we demonstrate that MTP is a promising tool for screening 

multi-component alloys and predicting their properties. This work was supported by 

the Russian Science Foundation (grant number 22-73-10206, https://rscf.ru/project/22-

73-10206). 
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Lattice thermal conductivity (𝜅𝐿 ) is a crucial physical property of crystals with 

applications in thermal management, such as heat dissipation, insulation, and 

thermoelectric energy conversion. However, accurately and rapidly determining 𝜅𝐿 

poses a considerable challenge. In this study, we introduce a formula that achieves high 

precision (mean relative error=8.97%) and provides fast predictions, taking less than 

one minute, for 𝜅𝐿 across a wide range of inorganic binary and ternary materials. Our 

interpretable, dimensionally aligned and physical grounded formula forecasts 𝜅𝐿values 

for 4,601 binary and 6,995 ternary materials in the Materials Project database. Notably, 

we predict undiscovered high 𝜅𝐿  values for AlBN2 (𝜅𝐿 =101 W m−1 K−1) and the 

undetected low 𝜅𝐿 Cs2Se (𝜅𝐿=0.98 W m−1 K−1) at room temperature. This method for 

determining 𝜅𝐿 streamlines the traditionally time-consuming process associated with 

complex phonon physics. It provides insights into microscopic heat transport and 

facilitates the design and screening of materials with targeted and extreme 𝜅𝐿 values 

through the application of phonon engineering. Our findings offer opportunities for 

controlling and optimizing macroscopic transport properties of materials by 

engineering their bulk modulus, shear modulus, and Gruneisen parameter. 

 

Fig. 1. The schematic framework of the proposed approach. 
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Fig. 2. Pearson correlation coefficient (PCC) between lattice thermal conductivity 𝜿𝑳 and 

related properties. 

 
FIG. 3. Comparison of thermal conductivity 𝜿𝑳 at 300 K between our formula prediction and 

ALFOW database with gray hollow points. 

 

Keywords: Lattice Thermal Conductivity, Phonon Engineering, An Interpretable 
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Lithium ion battery (LIB) is the leading candidate in the market due to the virtue 

of its better energy efficiency as well as its higher gravimetric and volumetric capacity. 

Nevertheless, LIBs have had long standing safety concerns mainly due to the organic 

carbonates (electrolytes) and lithium hexafluourophosphate (LiPF6) conducting salts. 

Ionic liquids (ILs) based on bis(trifluoromethanesulfonyl)imide [TFSI] −  and 

fluorosulfonyl(pentafluoroethanesulfonyl)imide [FSI] − are leading candidate anions 

for LIB electrolytes as they generally exhibit better thermal stability and higher ionic 

conductivity. To further advance the development of the hybrid electrolytes with 

improved electrochemical performance, we have investigated by making use both ab 

initio density functional theory (DFT) and molecular dynamics (MD) simulations to 

provide atomic and molecular level insight into the structural and dynamical properties 

of [EMI][TFSI] and [EMI[FSI] ionic liquids, ethylene carbonate (EC) and dimethyl 

carbonate (DMC) co-solvent mixtures, which are currently being targeted for 

applications in next-generation Li-ion battery electrolytes. Both the [TFSI] - and [FSI] 

- anions form bifurcated hydrogen bonds with Cl-H1---O1 and Cl-H1---N1 fragments 

of the [EMI] + cation. Moreover, charge transfer occurs mainly from the lone pairs of 

oxygen and nitrogen atom to the σ-type anti-bonding orbital of the C–H and π-type 

anti-bonding orbitals of N-C bonds. The MD simulations have predicted a preference 

of Li + ions to interact with DMC molecules within its first solvation shell rather than 

with the highly polar EC ones in the IL/carbonate mixtures, a phenomenon which is 

attributed to the local tetrahedral packing of the solvent molecules in the first solvation 

shell of Li + ions. Furthermore, results from radial distribution function (RDF) and 

spatial distribution functions (SDF) show that, in the pure ionic liquid, adjacent cations 

are almost exclusively located on top and below the ring cation, whereas the anions 

mainly coordinate to the cation within the ring plane. The behavior of the mean square 

displacement (MSDs) for the center-of-mass of the ions as a function of IL/carbonate 

co-solvent mixtures indicated that the ions exhibited slow dynamics (diffusity) with 

higher carbonate content. Our study on the diffusion coefficient analysis of Li +, [FSI] 

- and [TFSI] - ions have revealed that the organic solvents restrict the free motion of 

the ions, reducing the dynamics (diffusivity) of the electrolytes. The simulation results 

also revealed that the total molar ionic conductivity for the different mixing ratios of 

IL/carbonate blends decrease with higher contents of EC/DMC co-solvents, showing 

that higher carbonate co-solvents have the effects of reducing the molar ionic 

conductivity. 

 

Keywords: DFT, MD, electrolyte, Lithium ion battery 
 
References  
1. ACS Omega 2024, 9, 12, 14406–14418.  

2. Discov Appl Sci 6, 60 (2024).  

3. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-qql65. 

mailto:abrhamollawagaye@gmail.com
mailto:abrhamollawagaye@gmail.com
mailto:abrhamollawagaye@gmail.com


International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

103 

 

Bio: 

Abraham Molla Wagaye did his PhD in physical Chemistry (2024, Addis Ababa, 

Ethiopia), M.Sc. in Chemistry (2011, Regina, Canada), M.Sc.& B.Sc (2007, Addis 

Ababa, Ethiopia). Dr. Abraham has had various awards. He was awarded the Ethiopian 

Talent Power Series: Dashen Bank Sc. Addis Ababa, Ethiopia, 2020. Innovation and 

Technology Award: Minster of Innovation and Technology (MINT), Addis Ababa, 

Ethiopia. Certificate of Recognition: Hawassa University, Dept. of Chemistry, Ethiopia, 

2018. Graduate Research Awards; University of Regina, Regina, SK, Canada, 

2011.Graduate Travel Awards; University of Regina, Regina, SK, Canada, 

2009.University of Regina Graduate Teaching Assistant Award; 2009; University of 

Regina, Regina, SK, Canada. 

Dr. Abraham Molla Wagaye is currently assistant prof. of physical chemistry at 

Hawassa University, Ethiopia. His area research includes Quantum chemistry, machine 

learning and artificial intelligence. Dr. Abraham also works in bridging science to 

engineering and innovation. Because the importance of the sciences for innovation 

remains high, work in Abraham group combines innovation projects with shorter time 

scales and curiosity driven researches with longer timescales. Society urgently demands 

new technologies to deal with grand societal challenges such as renewable energy, 

resource efficiency, climate change, scarcity of materials, and health care. At the same 

time these challenges create exciting new business opportunities that are bound to 

enhance future economic competitiveness. To cope with these global challenges, we 

need fundamental breakthroughs in science, engineering, and technology. These major 

scientific questions and industrial problems often call for multidisciplinary researches 

in science and engineering. Scientists and engineers together need to generate 

breakthrough solutions that go beyond incremental progress, also outside the technical 

universities. Work in my group involves designing and developing home based 

sustainable technologies for the manufacturing industries. He is working to design and 

develop Microwave and Ultrasonic Technologies for use by Ethiopia’s manufacturing 

enterprises. Microwave and Ultrasonic based technologies are modern techniques that 

meet many of today's requirements in terms of environmental sustainability, speed and 

automation. Modern developments in this area promote a multi-disciplinary approach 

and this work is more efficient as a result. 

 



International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD2024) October 9-13, 2024, Shanghai, China 

 

104 

 

P02: 

Non-trivial Contribution of Carbon Hybridization in Carbon-based Substrates to 

Electrocatalytic Activities in Li-S Batteries 

Zhenyu Li*, Jiawen Zhu1, Jiaqi Cao1 
1Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials 

for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University 

of Science and Technology of China 

*Corresponding Author: zyli@ustc.edu.cn 

 

Appling an electrochemical catalyst is an efficient strategy for inhibiting the shuttle 

effect and enhancing the S utilization of Li-S batteries. Carbon-based materials are the 

most common conductive agents and catalyst supports used in Li-S batteries, but the 

correlation between the diversity of hybridizations and sulfur reduction reaction (SRR) 

catalytic activity remains unclear. Here, by establishing two forms of carbon models, 

i.e., graphitic carbon (GC) and amorphous carbon (AC), we observe that the nitrogen 

atom doped in the GC possesses a higher local charge density and a lower Gibbs free 

energy towards the formation of polysulfides than in the AC. And the GC-based 

electrode consistently inherits considerably enhanced SRR kinetics and superior 

cycling stability and rate capability in Li-S batteries. Therefore, the function of carbon 

in Li-S batteries is not only limited as conductive support but also plays an unignorable 

contribution to the electrocatalytic activities of SRR. 
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Methods based on the highly accurate ab initio calculations have become the 

standard for computationally guided studies on physical properties of liquid electrolytes, 

crystal structure prediction, lattice thermal conductivity, and many other materials 

science topics. However, such methods are frequently too expensive to capture some 

key properties that converge slowly with respect to simulation length and time scales, 

for example, viscosity of liquid electrolytes. Machine-learned interatomic potentials, 

which are computationally more affordable and reach the accuracy of ab initio 

simulation, hold the key to computational materials design. 

In this work we show how moment tensor potential methodology1can be used to 

generate accurate interatomic potentials. An important aspect of our workflows is the 

incorporation of an active learning scheme during training dataset construction2, which 

enables the generation of a robust and accurate potential, while maintaining a moderate-

sized training dataset. We will demonstrate the results of our calculations for thermo-

physical properties of molten electrolytes using LiF-NaF-KF as a test system3. Then we 

will show how lattice dynamics (in particular, lattice thermal conductivity) can be 

accurately calculated using MTP 4 for Ga2O3. Last but not least, we are going to present 

how MTP can be used to speed up crystal structure prediction. We will show the 

methodological developments we did for crystal structure prediction and benchmarks 

for benzene, glycine, and some inorganic compounds5. 

 

Keywords: Machine Learning Interatomic Potentials, Moment Tensor Potential, Active 

Learning, Liquid Electrolytes, Crystal Structure Prediction, Lattice Thermal 
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Oxygen electrocatalysis, encompassing both the oxygen evolution reaction (OER) 

and the oxygen reduction reaction (ORR), is a critical process in water 

splitting,metalairbatteries, and fuel cells. However, the high cost, scarcity, and poor 

electrochemical stability of noble-metal-based catalysts limit their large-scale 

application. As a result, there is an urgent need to develop effective and low-cost 

alternative electrocatalysts.  

In recent years, two-dimensional conjugated metal-organic frameworks (2D 

MOFs), composed of metal centers and organic ligands, have garnered significant 

attention in catalysis due to their high atomic utilization efficiency and excellent mass 

transport properties. The catalytic properties of 2D MOFs can be precisely controlled 

by modifying the metal or ligand environment. Despite this potential, the synergistic 

effect between metal sites and ligands remains poorly understood.  

In our study, we systematically constructed a series of novel 2D HATN-based 

MOFs using various combinations of metal sites and coordination microenvironments. 

These were screened as bifunctional oxygen catalysts, evaluating their stability, activity, 

selectivity, and adherence to scaling relationships. The screening results were validated 

using a constant potential model, and the underlying activity was elucidated through 

electronic structure analysis. Additionally, we employed a data-driven machine learning 

algorithm to analyze the structure-performance relationship in the catalytic reaction, 

focusing on intrinsic material characteristics independent of computational simulation 

outputs. The trained gradient boosting regression model was further discussed for 

interpretability using Shapley Additive exPlanations. 
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High-throughput screening of thermoelectric materials from databases requires 

efficient and accurate computational methods. Machine-learning interatomic potentials 

(MLIPs) provide a promising avenue, facilitating the development of database-driven 

thermal transport applications through high-throughput simulations. However, the 

present challenge is the lack of standardized databases and openly available models for 

precise large-scale simulations. In this work, we introduce HH130, a standardized 

database for 130 Half-Heusler (HH) compounds in MatHub-3d 

(http://www.mathub3d.net), containing both MLIP models and datasets for the thermal 

transport of HH thermoelectrics. HH130 contains 31,891 total configurations (~ 245 

configurations per HH) and 390 MLIP models (three models per HH), generated using 

the dual adaptive sampling method to cover a wide range of thermodynamic conditions, 

and will be open-access on MatHub-3d. Comprehensive validation against first-

principles calculations demonstrates that the MLIP models accurately predict energies, 

forces, and interatomic force constants (IFCs). Based on the MLIP models in HH130, 

we efficiently performed four-phonon interactions for 80 HHs with phonon frequencies 

closely matching ab initio results. It is found that HHs with 8 valence electron count 

(VEC) per unit cell generally exhibit lower lattice thermal conductivities (κLs) 

compared to those with 18 VEC, due to a combination of low 2nd IFCs and large 

scattering phase spaces in the former group. Additionally, we identified several HHs 

that demonstrate significant reductions in κL due to four-phonon interactions. HH130 

provides a robust platform for high-throughput computation of κL and aids in the 

discovery of next-generation thermoelectrics through machine learning. 
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The development of aqueous zinc ion batteries (AZIBs) has been hindered by the 

prevalence of adverse side reactions and the formation of by-products. The underlying 

cause of these side reactions has been identified1 as the decomposition of free water 

(HER), which is accompanied by the desolvation of metal ions. The decomposition of 

water generates OH-, which then reacts with the metal ions to produce by-products. 

Moreover, the local increase in pH value results in an excessive consumption of the 

electrolyte. It follows that a minimum quantity of free water is necessary in order to 

regulate the solvated structure of Zn2+.  

At present, two principal methodologies are in use: the incorporation of additives. 

Those papers2-4 have demonstrated that the introduction of a variety of polar additives, 

achieved through the formation of a eutectic system, the alteration of hydrogen bonding 

patterns or the synthesis of zinc salts, among other techniques, can assist in controlling 

the solvation structure of Zn2+ in order to suppress side reactions and by-products. 

The second approach entails the elevation of the salt concentration. With regard to 

the second method, it is necessary to consider how the problem is solved as the solution 

concentration increases. 

A conclusion was reached through the qualitative analysis of molecular dynamics 

methods (MD), which was then quantitatively corroborated by calculations using 

Density Functional Theory (DFT). The conclusion is that as the solution concentration 

increases, the anion Cl- in the electrolyte gradually ligands with Zn2+ via electrostatic 

interaction and replaces the free water in the first solvated shell layer around Zn2+, thus 

reducing the amount of active water during charging, and thus suppressing side 

reactions and by-products. 
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Metal alloy catalysts are promising candidates for the conversion of CO2 into 

valuable chemicals and fuels.1Nonetheless, finding alloys with the desired 

catalyticperformance is a formidable task due to an almost infinite compositional and 

structural space. This work focuses on the study of CO2 activation on Single-Atom 

Alloys (SAAs), i.e., systems with one guest atom embedded in a host metal 

element.2Starting with a series of DFT-mBEEF simulations, we evaluated the CO2 

interaction with 780 surface sites in 36 SAAs based on Cu, Zn, and Pd hosts. From 

those surface sites where CO2 displays chemisorption, we collected 24 electronic and 

geometric parameters characterizing them. Then, we used this data set as input for the 

Subgroup Discovery (SGD) artificial intelligence approach.3Described as a good 

indicator of the molecule’s activation,4we chose the large elongation of at least one of 

the C–O bonds as the target for the SGD studies.  

Out of the 24 offered parameters, SGD unveiled rules connecting 4 key properties 

of the SAA surface sites with the CO2 activation. The selected parameters are the site’s 

electron affinity and Pauling electronegativity, the generalized coordination number, 

and the SA d orbital radius. Given as a set of inequalities, these SG rules constrain the 

values of the key properties. Therefore, by pointing to specific regions in the alloy space, 

the rules enable a fast screening of surface sites capable of significantly elongating the 

C–O bond(s). In particular, we apply the rules to identify promising alloys among 1,500 

candidate SA and dual-atom alloys.5Through additional DFT-mBEEF calculations, we 

tested a subset of the alloys selected by the SG rules and confirmed its capability to 

activate CO2 .  
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Machine learning potential (MLIP) emerges as a powerful tool in materials 

research and design1, 2. However, most MLIP methods rely only on a single descriptor 

generated by mathematical functions instead of mapping the three-dimensional space 

of materials structure, and thus this type of potential is typically limited to specific 

compositions[3, 4]. In this research5, we present a graph convolutional machine learning 

potential (GCMLP) software, termed PotentialMind, which can transform three-

dimensional atomic structures into vectors comprising nodes, edges, and weights based 

on multiple descriptors. Using Sb-Te phase change materials as examples, a model 

named GCMLP-ST suitable for 12 stoichiometries of Sb-Te compounds has been 

constructed, whose root mean square error for energy and forces are respectively 4.51 

meV and 73.13 meV/Å for training datasets and are respectively 4.97 meV and 76.25 

meV/Å for unfamiliar testing datasets. Moreover, for the energy-volume curves and 

radius distribution function by molecular dynamics, the GCMLP-ST model with 10,000 

atoms exhibits good agreement with the ab-initio molecular dynamics (AIMD) results 

across crystalline, liquid, and amorphous phases for the six representative Sb-Te 

material systems, which also exhibit 50 times the computational efficiency of AIMD. 

With this framework, the architecture of the machine learning model can be customized 

by deep and transfer learning, extending to other materials systems. In addition, 

benefiting from the highly efficient of PotentialMind molecular dynamics (PMMD), it 

can be used for real devices, spanning tens of nanoseconds and comprising millions of 

atoms under different programming conditions that are impossible by AIMD 

simulations. 
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Raman spectroscopy is a crucial experimental technique for characterizing the 

structure and interactions of two-dimensional (2D) materials. However, comprehensive 

theoretical Raman studies on 2D materials are still relatively scarce. YbOCl, a newly 

discovered 2D material, exhibits semi-metallic ferromagnetism, making it a promising 

candidate for spintronic devices. Based on this, we conducted a systematic and in-depth 

study of the Raman spectral characteristics of YbOCl. 

Firstly, through simulations using different exchange-correlation functionals and 

van der Waals corrections, we found that the potential energy surface (PES) is critical 

for accurately simulating harmonic Raman spectra. Secondly, employing the quasi-

harmonic approximation (QHA) and ab initio molecular dynamics (AIMD), we 

analyzed the anharmonic effects arising from electron-phonon and phonon-phonon 

interactions in YbOCl. The results indicated that the anharmonicity in this material is 

relatively weak. Lastly, by investigating the Raman spectra under different 

temperatures and strains, we confirmed that the van der Waals interactions in YbOCl 

crystals are significantly weaker than chemical bonds. The multi-layer Raman 

simulations further supported the existence of weak interlayer van der Waals 

interactions. 

This systematic study of Raman spectra provided us with valuable insights into the 

internal structure and interactions of YbOCl. Additionally, through Raman spectrum 

simulations of the 2D magnetic material CrCl3, we explored spin-phonon coupling 

effects. Moreover, in collaboration with experimental teams, we investigated the 

Raman spectra of other 2D materials, such as α-MnSe and SnP. Our research offers 

valuable insights into the relationship between the spectra and structure of 2D materials. 
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Perovskite oxides have been extensively studied for their wide range of 

compositions and structures, as well as their valuable properties for various 

applications.1 Expanding from single- perovskite ABO3 to double-perovskite A2BB’O6 

significantly enhances the ability to tailor specific physical and chemical properties. 

However, the vast number of potential compositions of A2BB’O6 makes it impractical 

to explore all of them experimentally. In this study, we conducted high-throughput 

calculations to systematically investigate the structures and stabilities of 4900 A2BB’O6 

compositions (with A=Ca, Sr, Ba, and La; B and B’ representing metal elements) using 

10 common crystal structures (P21/c; C2/m; I4/m; R3; I4/mmm; Ba2InCuO6-type, 

P3̅m1; Ba2NiTeO6-type, R3̅m; Li2SnTeO6-type, Pnn2; Ni3TeO6-type, R3) through over 

42000 density functional theory (DFT) calculations. We found 2022 stable/ metastable 

compounds and 1785 of them favor perovskite structures. By comparing with ICSD 

and literature, our analysis leads to the discovery of more than 1500 new 

thermodynamically stable A2BB’O6 compounds, with over 1100 of them exhibiting 

double perovskite structures, predominantly in the P21/c space group. 

By leveraging the high-throughput dataset, we developed machine learning models 

that achieved mean absolute errors of 0.0422 and 0.0329 eV/atom for formation energy 

and decomposition energy.  Among the 23 regression models evaluated in this work, 

XGBoost demonstrated the best performance in predicting formation energy and 

decomposition energy. Using these models, we identified 803 stable or metastable 

compositions beyond the chemical space covered in our initial calculations, with 612 

of them having DFT-validated decomposition energies below 0.1eV/atom, resulting in 

a success rate of 76.2%. This study delineates the stability landscape of A2BB’O6 

compounds and offers new insights for exploration of these materials.  
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Viscosity is a critical thermal property that influences the castability performance 

of alloys. Machine learning (ML) has emerged as a promising alternative method, 

leading material science into a data-driven era. 

In this study, 867 sets of viscosity experimental data collected from the literature 

were employed to construct the multi-component alloy viscosity prediction model 

through five different machine learning algorithms. The melt temperatures (T) and 

solute contents of Al, Cu, Si, Mg, and Fe were utilized as model inputs, while the 

viscosity values were taken as model outputs. The outcomes suggest that the random 

forest regression (RFR) algorithm delivers excellent predictive performance, with root 

mean square error (RMSE) on the test set being 0.168 and the coefficient of 

determination (R2) being 0.984.  

The consistency between the predicted viscosity and the experimental data for 

unary, binary, and ternary systems across temperature and composition variations 

validates the model's high prediction accuracy. The Pearson correlation analysis reveals 

a significant positive correlation between the viscosity and the content of Fe and Cu. 

On the contrary, Si and Mg exhibit a negative correlation with viscosity.  

Furthermore, the machine learning model is interpreted by using the Shapley 

Additive Explanations (SHAP) model, uncovering critical ranges for input features 

(T>1500K, xCu<21at.%, Fe-free, or xSi>3.8at.%) that are significant for the design of 

low-viscosity alloys. 
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Herein, we propose a novel generative adversarial network model, guided by a 

data-driven approach and incorporating the real physical structure of crystals, to address 

the complexity of high-dimensional data and improve prediction accuracy in materials 

science. The model, termed GAN-DDLSF, introduces a novel sampling method called 

data-driven latent space fusion (DDLSF), which aims to optimize the latent space of 

generative adversarial networks (GANs) by combining the statistical properties of real 

data with a standard Gaussian distribution, effectively mitigating the "mode collapse" 

problem prevalent in GANs. Our approach introduces a more refined generation 

mechanism specifically for binary crystal structures, such as gallium nitride (GaN). By 

optimizing for the specific crystallographic features of GaN while maintaining 

structural rationality, we achieve higher precision and efficiency in predicting and 

designing structures for this particular material system. The model generates 9,321 GaN 

binary crystal structures, with 16.59% reaching a stable state and 24.21% found to be 

metastable. These results significantly enhance the accuracy of crystal structure 

predictions and provide valuable insights into the potential of the GAN-DDLSF 

approach for materials discovery and design, offering new perspectives and methods 

for materials science research and applications.  
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Polymerization is the important chemical reaction for synthesis of polymeric 

materials. It is of great scientific significance to model and predict polymerization 

reaction by first-principle based computation and simulation. In polymerization 

systems, the motion of polymer chains is coupled with chain growth reaction which 

leads to varying reaction rate due to fluctuating chain structure and conformation. In 

this work, the DFT-driven machine-learning potential model is combined with classical 

molecular dynamics (MD) simulation to describe the classical motion of polymer 

chains and predict polymerization reaction at quantum chemical accuracy. The classical 

MD is applied to chain motion and DFT-based machine-learning reaction prediction 

model is restricted to the reactive region which reduces the computational intensity and 

enables large-scale simulation of polymerization systems. The method is first tested for 

the polymerization of ethylene by free-radical mechanism, and the reaction progress 

and chain growth during the polymerization is analyzed. We hope the method is 

promising for modelling polymerization reaction and would be would be an alternative 

for predict polymerization kinetics. 
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There are several kinds of Named Entity Recognition (NER), but they are required 

to label relevant samples and train the concrete NER model. Due to the specification of 

theme-specific documents, these NER models are considerably hard to identify 

potential theme-specific entities. To address this challenge, we propose an effective 

two-stage approach of masked NER associated with LLMs, which uses the 

unsupervised mechanism rather than the supervised one. The approach consists of 

initial ontology construction to organize hierarchical entities using LLMs and theme-

specific ontology fine-tuning using Wikipedia categories. The fine-tuned entities are 

transformed into embedding vectors and stored in a graph dataset. We then design and 

implement a masked NER framework using an unsupervised mechanism that supports 

accurately identifying entities in heterogeneous documents based on the constructed 

theme-specific entity ontology. Extensive experimental results suggest that the 

proposed masked NER can precisely locate the known entities in the theme-specific 

entity ontology while improving the accuracy of NER extraction in the remaining text. 

Compared to the mainstream NER framework spaCy 3, the masked NER can identify 

more valid entities in the input Markdown text and use the newly detected unknown 

entities to continuously update the created ontology. These results also pave the way 

for creating more resilient and efficient NER systems suited to specialized themes. 
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The conversion of CO2 into high-value multi-carbon (C2+) products by 

electrolysis is a promising solution to realize global mission of carbon neutrality. The 

limited CO2 transfer would induce insufficient *CO coverage and thus excessive *H 

adsorption will lead to serious HER side reaction and reduce the C2+ selectivity, 

especially at high current density (> 500 mA cm-2). Therefore, it is important to develop 

efficient electrocatalysts with high selectivity towards C2+ products at ampere-level 

current density operation.  

We incorporate an inert La(OH)3 species into Cu catalyst where La(OH)3 species 

modifies the electron population of Cu surface. The modification of Cu electronic 

structure is beneficial for hindering the HER, promoting *CO adsorption and C2+ 

selectivity. There are two key achievements in this work. 

1. An inert-phase incorporation strategy for hindering the HER, activating the 

*CO intermediate and subsequent C-C coupling. The interplay of La(OH)3 and 

Cu can modulate the electron distribution around the Cu surfaces can be found 

through theoretical calculation, contributing to the activation of *CO, favorable 

*CO hydrogenation, and subsequent *CO-*COH dimerization. 

2. Superior selectivity towards C2+ products for ampere-level current density 

CO2RR. In a customized flow cell, the modified La(OH)3/Cu catalyst exhibits 

enhanced C2+ selectivity ~2.2 times that of pure Cu, with a high C2+ Faradaic 

efficiency of 71.2% at a current density of 1000 mA cm-2.  

Our work represents a breakthrough in terms of developing a high current density 

CO2RR electrocatalyst with suppressing HER and promoting C2+ selectivity. We 

therefore believe this work can provide some guidance for engineering industrial level 

current density CO2RR electrocatalyst and attract broad interest for scientists in 

material sciences, chemistry, engineering, and energy. 
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Considering the critical applications of molten salts in clean energy and industrial 

sectors, such as energy storage, nuclear reactor cooling, and metal refining, the rapid 

and accurate acquisition of their physical and chemical properties is essential. Data-

driven machine learning approaches are expected to play a significant role in predicting 

molten salt properties, but practical applications still face three main challenges: data 

quality and quantity, model accuracy, and code usability.  

To address these issues, this study developed a deep learning model based on graph 

convolutional networks. By integrating element features, ion composition and ratios, 

and interaction information within the molten salt system, the model effectively 

predicts the physical and chemical properties of molten salts. Initially, we validated the 

effectiveness and prediction accuracy of the model using density prediction as a case 

study. Subsequently, using transfer learning, the model was successfully applied to 

viscosity prediction despite smaller data. The root mean square error (RMSE) and mean 

absolute error (MAE) for density prediction stabilized at exceptionally low values of 

0.002 and 0.001 g/cm³, respectively, after 5000 training epochs, indicating a high 

degree of precision and generalization ability. The RMSE and MAE for viscosity 

predictions were found to be 0.012 and 0.024 mPa·s, respectively, showcasing effective 

transfer of learning and model robustness across different properties. Furthermore, we 

have made our codes publicly available to allow researchers to predict molten salt 

properties quickly and accurately in practical applications. In conclusion, this study 

offers an approach to predicting the physical and chemical properties of molten salts 

and aids in overcoming the challenges present in molten salt property research. 
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Anti-perovskite materials (APs) are a promising class of solid-state electrolytes 

attributing to their high structural tolerance and good formability. However, limited APs 

have been synthesized experimentally, indicating the necessity to explore the potential 

chemical spaces with higher ionic conductivities. Herein, through combined particle 

swarm optimization algorithm, high-throughput first-principles calculations, ab initio 

molecular dynamics and long timescale machine-learning molecular dynamics 

simulations, the strategies based on site-exchanging and anion clusters are shown to 

simultaneously enhance the thermal stability and the sodium diffusivity in the designed 

APs. Among these APs, the highest theoretical ionic conductivity of 39.05 mS/cm is 

achieved in Na3BrSO4 at room temperature, due to the strong coupling of cluster 

rotation and sodium migration. We highlight not only the rotation dynamics but also its 

coupling with Na diffusion contribute to the high ionic conductivity, as confirmed by 

the proposed local difference frequency center to evaluate coupling degree. Our work 

designs the promising site-exchanging APs and offers the insights for the coupling 

between anion rotation and cation migration, which can effectively guide the design of 

superionic conductors with cluster rotation dynamics. 
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Thermoelectric materials (TE) can achieve direct energy conversion between 

electricity and heat, thus can be applied to waste heat harvesting and solid-state cooling. 

The discovery of new thermoelectric materials is mainly based on experiments and 

first-principles calculations. However, these methods are usually expensive and time-

consuming. In this work, we explore the possibility of using Machine learning (ML) 

methods to speed up the first-principles high-throughput screening of TE materials. 

Using the AICON code developed in our group1, we did first-principles high-

throughput transport properties calculation and built a database containing 796 

compounds’ electronic transport properties. Then, we picked up several compounds 

with high power factor and calculated their lattice thermal conductivity and figure of 

merit further. We have found many novel and promising TE materials. Some of them, 

such as Ge5Te4Se, KBiSe2, and BaCu2Te2, may have their performance better than state-

of-the-art TE materials.  

Then, in order to reduce the number of costly computations, we trained several 

types of ML models to identify the TE compounds with high power factor from the 

others with only crystal structure and parameters extracted from band structure as input2. 

Specifically, four ensemble learning models and two deep learning models based on 

graph neural network were trained and compared. Among them, the M3GNet model for 

n type data achieve accuracy, precision and recall all higher than 90%, which is the best 

among the models we obtained. Moreover, all of the trained models achieve the AUC 

values higher than 0.9, and the ROC curves of them are close to that of perfect classifier. 

Integrating these models into the calculation workflow of electronic transport properties 

in AICON can speed up the process of screening of TE materials greatly. 

We believe our work will greatly reduce the workload to find good thermoelectric 

materials and, in combination with experimental works, accelerate the discovery of 

superior thermoelectric materials. 
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Data is crucial in advancing scientific discovery within chemical engineering; 

however, the representation of this data is often underexplored. The combination of 

large language models and knowledge graphs can effectively enhance the 

representation and utilization of data, providing support for scientific discovery in the 

field of chemical engineering. 

We have integrated advanced methods such as Retrieval-Augmented Generation 

(RAG), Large Language Models (LLM), ontologies, AI Agents, and the SiPMai toolkit 

to extract data from literature and databases in the fields of chemical engineering and 

materials. Coupled with ontologies from the materials domain, we constructed a 

knowledge graph that encompasses various types and scales of chemical materials with 

diverse data modalities.  

Furthermore, we proposed a novel framework for “dynamic knowledge evolution” 

to enhance the design of chemicals and chemical engineering processes. Innovatively, 

we incorporated rich dynamic information into our knowledge graph, including 

reactions, catalysis, adsorption and various chemical process. The knowledge graph is 

equipped with a fine-tuned LLM, which allows for easy retrieval of diverse information 

in the fields of chemical engineering and materials. 

Through these integrated efforts, we have established a comprehensive 

methodology for representing next-generation technologies aimed at improving the 

performance, sustainability, and economic viability of diverse manufacturing processes. 

Ultimately, the developed fine-tuned LLM and RAG process tailored for the knowledge 

graph provide a robust platform for scientific inquiry and innovation in the field of 

chemical engineering. 
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Most materials science datasets are not so large that the accuracy of machine 

learning (ML) models is relatively limited if only simple features are used. Here, we 

constructed an interpretable ∆-machine learning (∆-ML) model to connect the hybrid 

functional HSE bandgap ( ) with the PBE functional bandgap ( ). The former 

can reproduce the band gap comparable with experiments, but the computational cost 

is much more challenging. The training is based on our high-throughput calculations 

on a set of two-dimensional semiconductors. Four complex descriptors, all based on the 

, are constructed using the sure independence screening and sparsifying operator 

(SISSO) algorithm. Using these descriptors, the ∆-ML can accurately predict the 

 of test set with a determination coefficient (R2) of 0.96. The error satisfies a 

normal distribution with a mean of zero. We provide a direct functional relationship 

between input descriptors and target properties. We find that   and the 5/6th 

power of    show a significant linear correlation, which may guide rapid 

prediction of  from  for materials with a greater than 0.22 eV. We also 

discussed the correlation between the atomic radius and the  . Our work will 

provide an effective and interpretable model to construct the optimal physical 

descriptors for ML prediction on bandgaps in screening massive new 2D materials 

research. 
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Transition state search is a critical step in discovering chemical reaction 

mechanisms and understanding reaction kinetics. Currently, the mainstream method in 

computational chemistry for finding transition states in reactions involves the use of 

Density Functional Theory (DFT) combined with algorithms such as Nudged Elastic 

Band (NEB). This approach, however, is costly for large-scale transition state searches, 

leading to an emergence of studies that utilize machine learning methods for transition 

state search. Yet, due to limitations in model accuracy, these machine learning 

approaches cannot fully replace DFT computational methods. In this paper, we propose 

Transition State Force Field (TSFF) framework for transition state search, which 

combine the state-of-the-art force field model, EquiFormerV2, with the NEB method. 

Our methodology significantly enhances the accuracy of transition state search tasks, 

particularly achieving a 71.1% success rate in chemical accuracy for transition state 

energy prediction. Frequency analysis revealed that transition states structures with a 

single imaginary frequency, account for 54.5% of our results, indicating a high 

proportion of true transition states. We also validated our approach on out-of-

distribution dataset, demonstrating the generality and downstream application potential 

of our method. 

 

Keywords: Transition State Searching, Density Function Theory (DFT), Nudged 

Elastic band (NEB), Machine Learning Force Field (MLFF) 
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Fischer-Tropsch synthesis (FTS), especially iron-based FTS, has been more and 

more significant from an economic point of view. The FTS process has been extensively 

studied. However, a thorough understanding of the reaction mechanism is still 

challenging due to its complexity. 

The past several years have witnessed rapid development and application of open- 

source platforms in computational chemistry and catalysis, containing numerous 

opportunities. A remarkable example is the universal machine learning potentials, such 

as MACE, GemNet-OC, and DPA-21, becoming very suitable for heterogeneous 

catalysis simulation by the capability for gathering information from various domains. 

Besides, open-source DFT software like ABACUS2 and open-source transition-state 

(TS) exploration packages like Sella3 can provide much help in computational catalysis 

with higher efficiency than previous methods in existing protocols. 

In our research, we utilized ABACUS, a fine-tuned DPA-2 potential, and a double- 

to-single TS exploration workflow combining NEB and Sella by ASE to do the 

computation of FTS main reaction mechanism on iron carbide surfaces based on 

previous research4. Our method has shown much efficiency and extendibility in 

catalysis simulation, and we’re striving forward to more intelligence and automatic 

workflow for FTS and other complex catalysis systems. 

Fig. DPA-2 model structure, training results, and computed FTS mechanism (CO/H2 dissociation as an 

example) 
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This study explores the identification of superior oxygen evolution reaction (OER) 

catalyst materials by employing a combination of machine learning, experimental 

techniques, and density functional theory (DFT) calculations. We analyzed the OER 

overpotentials and the adsorption free energies of key intermediates (*OH, *O, *OOH) 

across 171 perovskite structures, developing a highly accurate artificial neural network 

(ANN) model (R2 = 0.99). Through the strategic substitution of cations at the A and B 

sites with 73 different cations, we constructed 5,329 novel perovskite structures and 

predicted their properties. Additional doping efforts expanded our database to 101,251 

structures, leading to the identification of 17 promising catalysts. We synthesized four 

of these perovskite structures, discovering that CrFeO3 exhibited the lowest OER 

overpotential at 319 mV. DFT calculations further elucidated the mechanisms 

underlying the OER activity of these catalysts, offering valuable insights for future 

catalyst design. 

 

Keywords: Machine Learning, ANN, Center-environment Feature, OER, Perovskite 
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Proposing and utilizing machine learning descriptors for chemical property 

prediction and material screening has become a cutting-edge field of artificial 

intelligence-enabled chemical research. However, a single descriptor can only include 

partial features of a chemical research object, resulting in chemical information 

deficiency and limiting its generalizability. Meanwhile, incomplete data is a common 

scenario encountered in chemical research, whether the partially incompleteness of 

multiple descriptors due to sample contamination or the absence of a particular 

descriptor due to technological difficulties. Herein, we exploit the overlap and 

redundancy among chemical descriptors to construct an encoder-decoder machine 

learning training framework that enables reciprocal prediction of multimodal spectral 

and structural descriptors. After pre-training to endow the model with chemical insights, 

the multimodal data fusion is implemented in a descriptor-encoded hidden layer. The 

model's capabilities are validated in the system of CO/NO adsorption on Au/Ag 

surfaces. The model can not only predict masked data using partially obscured 

descriptors, but also predict one target descriptor from others. This framework will 

significantly reduce the model’s dependence on complete physicochemical parameters 

and improve its multi-target prediction capabilities.  

 

 
Figure 1. Pipeline of End to End tasks compared with Pretrain Tasks in our work. 
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Magnesium alloys as the lightest engineering metals have the potential to be widely 

used in transportation etc, but the bad corrosion resistance has limited the further 

applications. To overcome the limitations of traditional experimental trial-and-error 

approach in corrosion research, the ab-initio method to predict the polarization curves 

for galvanic corrosion of multi-phase Mg alloys has been established. To accelerate the 

screening of Mg alloy systems with better corrosion resistance, the corrosion materials 

genome have been further developed by combining the high-throughput-simulations 

and machine learning methods. The important surface atomic features have been also 

uncovered in terms of reducing the cathodic hydrogen evolution and anodic Mg 

dissolution kinetics, which have successfully guided the experimental development of 

corrosion-resistant Mg alloys.  
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Most piezoelectric materials exhibit a positive longitudinal piezoelectric effect 

(PLPE), while a negative longitudinal piezoelectric effect (NLPE) is rarely reported or 

paid much attention. Here, utilizing first-principles calculations, we unveil the origin of 

negative longitudinal piezoelectricity in ferroelectric hafnia by introducing the concept 

of weighted projected bond strength around cation in the c direction (WPBc), which is 

proposed to quantitatively characterize the asymmetric bonding stiffness along the 

strain direction. When the WPBc is anti-parallel to the direction of bulk spontaneous 

polarization, the polarization decreases with respect to tensile strain and leads to a 

negative piezoelectricity. Furthermore, to confirm the influence of WPBc on the 

piezoelectric effect and understand how the value of WPBc influences the piezoelectric 

coefficient e33, we acquire both the piezoelectric coefficient of doped hafnia and the 

corresponding bonding environment around each cation. The finding reveals that the 

more negative piezoelectric coefficient can be achieved through a concurrent 

achievement of the more negative average WPBc and the lower standard deviation 

(STD) of WPBc. In addition, the Sn- doped hafnia with the lowest average WPBc and 

smaller STD-WPBc is identified to have the highest piezoelectric coefficient (−2.04 

C/m2) compared to other dopants, showing great potential in next- generation 

electromechanical devices.  
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The rapid advancements in artificial intelligence (AI) are catalyzing 

transformative changes in atomic modeling, simulation, and design. AI-driven potential 

energy models have demonstrated the capability to conduct large-scale, long-duration 

simulations with the accuracy of ab initio electronic structure methods. However, the 

model generation process remains a bottleneck for large-scale applications. We propose 

a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre- 

trained across multiple disciplines, can be efficiently fine-tuned and distilled for various 

downstream tasks, thereby establishing a new framework for molecular modeling. In 

this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained 

on a diverse array of chemical and materials systems using a multi-task approach, DPA- 

2 demonstrates superior generalization capabilities across multiple downstream tasks 

compared to the traditional single-task pre-training and fine-tuning methodologies. Our 

approach sets the stage for the development and broad application of LAMs in 

molecular and materials simulation research. 
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Crystal structure prediction (CSP) has made significant progress, but most methods 

focus on unconditional generations of inorganic crystal with limited atoms in the unit 

cell. This study introduces XtalNet, the first equivariant deep generative model for end-

to-end CSP from Powder X-ray Diffraction (PXRD). Unlike previous methods that rely 

solely on composition, XtalNet leverages PXRD as an additional condition, eliminating 

ambiguity and enabling the generation of complex organic structures with up to 400 

atoms in the unit cell. XtalNet comprises two modules: a Contrastive PXRD- Crystal 

Pretraining (CPCP) module that aligns PXRD space with crystal structure space, and a 

Conditional Crystal Structure Generation (CCSG) module that generates candidate 

crystal structures conditioned on PXRD patterns. Evaluation on two MOF datasets 

(hMOF-100 and hMOF-400) demonstrates XtalNet's effectiveness. XtalNet achieves a 

top-10 Match Rate of 90.2% and 79% for hMOF-100 and hMOF-400 datasets in 

conditional crystal structure prediction task, respectively. XtalNet represents a 

significant advance in CSP, enabling the prediction of complex structures from PXRD  

data without the need for external databases or manual intervention. It has the potential 

to revolutionize PXRD analysis. It enables the direct prediction of crystal structures 

from experimental measurements, eliminating the need for manual intervention and 

external databases. This opens up new possibilities for automated crystal structure 

determination and the accelerated discovery of novel materials. 
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In the rapidly evolving field of material science, existing tools like Materials Studio 

(MS) are invaluable but often fall short of comprehensive needs. Uni-View- Materials 

APP emerges as a groundbreaking solution, addressing these gaps with several key 

features. It seamlessly reads and edits various software formats, ensuring compatibility 

across platforms. The app also inherits robust database functionalities and supports 

efficient project collaboration. Uni-View-Materials APP stands out with its modular 

front-end components, easily integrable into other applications, enhancing versatility. 

Looking ahead, the app aims to interface with advanced computational applications that 

boast more sophisticated algorithms than MS, heralding an AI4S (Artificial Intelligence 

for Science) era in material computation. This innovation promises to revolutionize 

material simulation and analysis, making processes more efficient and cutting-edge. 
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The existing design principles and screening strategies of superionic conductors 

predominantly focus on the perspective of a static crystal structure. However, the 

dynamic mechanism involving anion rotational motion as well as its interaction with 

cation translational motion has received less exploration, especially in the realm of the 

accelerated discovery of new fast ionic conductors with these strong dynamic couplings. 

Herein, by identifying the framework connectivity of structures in the Materials 

Project database, we design a multistep density functional theory molecular dynamics  

high-throughput workflow to rapidly screen Na superionic conductors with isolated 

framework and coupled cation-anion dynamics. 

Building on the observation of persistent, large-angle anion reorientation and the 

time-spatial correlation of Na hops and polyanion rotations, we identified polyanion 

rotation behavior for the first time in 10 new compounds and quantified the contribution 

of polyanion rotation to Na diffusion, among which three are novel Na superionic 

conductors with significant cation-anion dynamics coupling, including NaNbCl6, 

NaGaBr4, and Na4SiSe4. Their calculated room temperature ionic conductivities reach 

7.67, 3.06, and 1.42 mS/cm, respectively. 

This work contributes by exploring the potential of anion rotation within isolated 

polyanion framework structures and revealing the correlation between anion and Na 

ion dynamics, providing new directions for the development of novel Na superionic 

conductors. 
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The increasing global CO2  emissions have spurred interest in CO2 reduction 

reaction (CO2RR) as an electrocatalytic technology to mitigate environmental issues 

caused by fossil fuels. Traditional experimental methods and density functional theory 

calculations are resource-intensive and time-consuming. Current machine learning 

models, limited to specific scales, struggle to connect micro and macroscopic properties. 

Therefore, the creation of cross-scale models is vital for accelerating the development 

of efficient CO2RR catalysts and bridging the gap between micro and macroscopic 

properties. This study focuses on the development of across-scale, multi-modal, multi- 

target CO2RR model to address the challenges posed by increasing global CO2 

emissions. The proposed model, combining machine learning (ML) and deep learning 

(DL) methodologies, aims to bridge the gap between different scale properties by 

modeling the catalytic interface across microscale, mesoscale, and macroscale. It 

predicts key electrochemical parameters such as selectivity, overpotential, and current 

density to optimize the CO2RR process. Owing to the complexity of the modeling 

process, the model is likely to encounter challenges including aligning theoretical 

computations with experiments, large computational requirements, constructing 

hierarchical multi-scale models, and integrating various data types. This perspective 

may enhance insights into catalysts and deepen the understanding of the CO2RR 

process. 
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The resurgence and widespread application of artificial intelligence generally rely 

on the combination of big data and deep learning algorithms. However, data in materials 

science research are often scarce, incomplete, and highly uncertain, posing severe 

challenges to the search and design within the vast materials parameter space. To enable 

small-data-driven materials design, we propose for the first time the concept of "pre-

attention" mechanism based on which we develop a machine learning (ML) method via 

feature engineering. Adhering to the principles of feature engineering, we construct a 

"Center-Environment" (CE) feature model that reflects core-shell structural 

characteristics, coupled with composition and elementary properties by leveraging 

domain knowledge in materials science. Therefore, the CE model introduces the 

concept of pre-attention by focusing limited data on a feature model with both 

composition and structure information encoded with elemental physiochemical 

properties.  

“All you need is attention”. Currently popular Transformer algorithms in large 

language models require large amounts of data to achieve a multi-head "self-attention" 

mechanism. In contrast, the CE pre-attention mechanism shifts attention from complex 

black-box machine learning algorithms to explicit feature models with physical 

meaning, reducing data requirements while enhancing the transparency and 

interpretability of machine learning models. We combine CE features with kernel 

functions or deep machine learning algorithms to construct machine learning models, 

successfully applying them to studies of bulk materials 1-3, surfaces 4-5, and local doping 

systems 6-8, involving areas such as new material discovery, surface catalysis, and alloy 

effects. 

“What you need is pre-attention”. ML-CE essentially provides a way to include 

materials domain knowledge in to ML modeling. Comparative studies show that in 

small-data scenarios, our CE machine learning model exhibits higher accuracy and 

broader applicability than traditional deep learning models based on graph features. 

Since CE can be used to describe features of any complex crystal structure, machine 

learning based on CE features can become an effective and general method for data-

driven materials design oriented towards small datasets. 

 

Keywords: Machine Learning, Center-environment Feature Model, Pre-attention 
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As the lead frames of electronic chip and electric contact materials, the high-

strength and high-conductivity copper alloys need to simultaneously satisfy high 

mechanical strength and high electrical conductivity, achieving both good mechanical 

and electrical properties is often challenging due to their inherent contradiction. 

Furthermore, the comprehensive performance of copper alloys is influenced by a 

myriad of complex factors such as alloy composition, heat treatment, and rolling 

deformation processes. Optimizing alloy composition and processing concurrently to 

meet the multi-objective material performance requirements is a practical necessity for 

the development and industrial application of new materials. However, due to the vast 

potential material parameter space, large-scale systematic optimization of composition 

and processing remains highly challenging.  

This work introduces a high-throughput optimization of compositions and 

processing of multi-component copper (Cu-Zr-Cr) alloys at the scale of thousand 

samples per year, coupled with machine learning-based performance prediction at the 

million-level scale. The combined high-throughput experiment and machine learning 

provide an efficient “composition-processing-performance” holistic optimization 

capability for the development and industrial application of novel multi-component 

alloys. By simultaneously tunning key factors such as alloy composition, rolling 

deformation rate, and aging temperature/time, a total of 1669 copper alloy samples were 

prepared within a year using a high-throughput arc melting, heat treatment, and rolling 

system developed in-house, with hardness and electrical conductivity measured for 

each (3338 experimental data points in total). Machine learning models were 

constructed based on the high-throughput experimental data to predict hardness and 

electrical conductivity, with 1159 data points in the training set and 480 in the 

independent validation set, further extending predictions to a parameter space of one 

million (1,039,140) material combinations. Finally, copper alloy samples with typical 

performance were subjected to optical, scanning, and transmission electron microscopy 

observation to analyze and discuss the relationship between alloy microstructure and 

performance. The integrated high-throughput experimental and machine learning 

approaches build a solid foundation towards autonomous/automatic/self-driving 

materials experiments in future. 
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Figure 1. Electrical conductivity and hardness of Cu-Zr-Cr alloys: experiment data (1669 solid 

black circles) and machine learning predictions (1039140 open red squares). 
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Machine learning based on first-principles computational data provides a general 

end-to-end approach to develop interatomic potentials without the needs of analytical 

construction and empirical intuition. However, the extrapolation to unseen structures 

often encountered in their applications in molecular dynamics simulations is 

challenging to accurate prediction via data-based models which hardly exhaust all 

scenarios during the training period. Conventional classical force fields equipped with 

analytical energy expression often have deep roots on the physical laws, which 

somehow guarantees the reasonable extrapolation beyond the training dataset and 

tunable parameters with physical rationales.  

The accuracy and transferability are long-lasting demands for the development of 

new force fields motivated by the progress of benchmark theory and requests of various 

applications. The classical reactive force fields are able to describe efficiently the 

breaking and formation of chemical bonds smoothly without solving expensive 

quantum mechanical equations. We adopt the framework of reactive force fields 

ReaxFF and develop the force field parameters for several important classes, namely, 

all carbon, hydrocarbon, alloys. (1) All carbon ReaxFFC is able to describe various 

hybridization (sp, sp2, sp3) and dimensionality (0, 1, 2, 3 D) of carbon systems. ReaxFFC 

is applied to study carbon nanowires consisting of a long carbon chain encapsulated in 

carbon nanotubes1; (2) Hydrocarbon ReaxFFCHON is reparametrized after two decades 

with more accurate benchmark meta-GGA DFT with a M06-2X functional. 

ReaxFFCHON is applied to understand hydrocarbon combustion mechanism for the 

development of clean fuels2; (3) Alloy ReaxFFNiAlRe is developed for Ni-Al-Re systems 

to understand Re enhancement effects in single crystal Ni-based superalloy as turbine 

materials of aeroengine3. The effect of long-range electrostatics on mechanical 

properties can be discussed beyond the conventional EAM potentials. Future 

implementation of ReaxFF augmented by machine learning is under progress. 
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Figure. New ReaxFFCHO-S22 force field and its MD application on methane combustion. 
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Mol-CSPy is a Python 3 package developed by the Day Group for rigid-molecule 

crystal structure prediction (CSP). It has recently been made open source and is 

available under GNU General Public License v3.0 on GitLab [1].mol-CSPy's key 

features include: CSP of rigid-molecules with quasi-random sampling [2], quasi-

random search with basin hopping [3], and threshold simulations for characterization 

of the lattice energy landscape of molecular crystals [4].mol-CSPy utilises distributed 

multipole analysis and classical force fields via DMACRYS [4] for high-speed energy 

evaluations and geometry optimizations. 
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Transparent solar heat control (TSHC) coating is an attractive option for efficient 

green building to minimize energy consumption and improve indoor living comfort 

owing to its optical properties of modulating sunlight. However, the complete blocking 

of the entire NIR spectrum has not yet been realized by the coating technology, and the 

coating development process remains time-consuming and labor-intensive.  

Artificial intelligence technologies open a perspective for efficient TSHC coating 

development at low cost by accomplishing several basic tasks: predicting the 

transmittance spectrum of unknown materials based on previous observations, 

predicting the solar heat control performance, and implementing feedback from 

performance to coating preparation. To effectively improve the performance of solar 

heat control coating for green building, we propose a data-driven combinatory strategy 

to develop the coating composed of multiple nanoparticles for broadband NIR blocking 

while maintaining high visible transmittance.  

Three types of nanoparticles, namely cesium tungsten oxide (CWO), antinomy tin 

oxide (ATO), and indium tin oxide (ITO), are chosen to prepare a TSHC coating aiming 

for an ideal performance of 70% visible transmittance and 100% NIR blocking. The 

neural network model, trained by 108 real experimental datasets, is capable of precisely 

predicting the transmittance spectrum of the coating based on the concentrations of 

multiple nanoparticles and inversely designing nanoparticle concentrations based on 

the desired transmittance spectrum in a sample space of 726 samples, thus significantly 

reducing the development cost and time. The results demonstrate that the optimized 

TSHC coating has a visible light transmittance of 70% and a near-infrared blocking rate 

of 96%. Its light to solar gain reaches as high as 1.4, indicating strong spectral selectivity, 

which is the highest value reported for TSHC coatings to date.  
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The Reactive Force-Field (ReaxFF) interatomic potential is a powerful 

computational tool for exploring, developing, and optimizing material properties. 

While quantum mechanics (QM) offers crucial insights at the electronic level, its high 

computational cost often limits its application to large-scale dynamic simulations. On 

the other hand, classical empirical interatomic potentials, though less resource-

intensive, enable simulations of dynamic processes over longer timescales and larger 

system sizes. However, their indissociable energy formulation and dependence on 

predefined atomic connectivity restrict their ability to model reactive events. ReaxFF 

bridges this gap by incorporating bond-order formalism into classical frameworks, 

enabling the smooth breaking and formation of chemical bonds without the expensive 

computational overhead of QM methods1. This review discusses the development, 

applications, and future prospects of ReaxFF, emphasizing its key role in advancing our 

understanding and control of complex material systems2. 
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